Submitted:
12 December 2025
Posted:
16 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Formulation
We also note that the indices can be directly mapped to the index k via . The new coordinate variables are defined as follows,
With the new sets of conjugate variables and , and plugging Eqs. (6) and (10) in Eq. (1), the transformed Hamiltonian H can be written as,3. Program and Usage
3.1. Overview
3.2. Compilation and Execution
3.3. External Field (Optional)
3.4. Limitations
4. Results
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| KS | Kustaanheimo-Steifel |
References
- Fabrikant, I.I.; Ambalampitiya, H.B. Laser-assisted radiative recombination in a cold hydrogen plasma. Journal of Physics B: Atomic, Molecular and Optical Physics 2024, 57, 195201. [CrossRef]
- Fabrikant, I.I.; Ambalampitiya, H.B.; Schneider, I.F. Semiclassical theory of laser-assisted dissociative recombination. Phys. Rev. A 2021, 103, 053115. [CrossRef]
- Fabrikant, I.I.; Ambalampitiya, H.B. Semiclassical theory of laser-assisted radiative recombination. Phys. Rev. A 2020, 101, 053401. [CrossRef]
- Ambalampitiya, H.B.; Stallbaumer, J.; Fabrikant, I.I. Laser-assisted charge transfer in positronium collisions with protons and antiprotons. Phys. Rev. A 2022, 105, 043111. [CrossRef]
- Ambalampitiya, H.B.; Fabrikant, I.I. Classical theory of laser-assisted spontaneous bremsstrahlung. Phys. Rev. A 2019, 99, 063404. [CrossRef]
- Price, H.; Lazarou, C.; Emmanouilidou, A. Toolkit for semiclassical computations for strongly driven molecules: Frustrated ionization of H2 driven by elliptical laser fields. Phys. Rev. A 2014, 90, 053419. [CrossRef]
- Peters, M.B.; Katsoulis, G.P.; Emmanouilidou, A. General model and toolkit for the ionization of three or more electrons in strongly driven atoms using an effective Coulomb potential for the interaction between bound electrons. Phys. Rev. A 2022, 105, 043102. [CrossRef]
- Katsoulis, G.P.; Peters, M.; Emmanouilidou, A. General model and toolkit for the ionization of three or more electrons in strongly driven molecules using an effective Coulomb potential for the interaction between bound electrons. Physical Review A 2024, 109, 033106.
- Aarseth, S.J. Gravitational N-Body Simulations: Tools and Algorithms; Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.
- Szebehely, V. Theory of Orbits: The Restricted Problem of Three Bodies; Academic Press: New York, 1967. [CrossRef]
- Heggie, D.C. A global regularisation of the gravitationalN-body problem. Celestial mechanics 1974, 10, 217–241. [CrossRef]
- Mikkola, S. A practical and regular formulation of the N-body equations. Monthly Notices of the Royal Astronomical Society 1985, 215, 171–177, [https://academic.oup.com/mnras/article-pdf/215/2/171/3032631/mnras215-0171.pdf]. [CrossRef]
- Kustaanheimo, P.; Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 1965, 218, 204–219.
- Yoshida, H. A new derivation of the Kustaanheimo-Stiefel variables. Celestial mechanics 1982, 28, 239–242. [CrossRef]
- Zare, K.; Szebehely, V. Time Transformations in the Extended Phase-Space. Celestial Mechanics 1975, 11, 469–482. [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing; Cambridge University Press: USA, 1992.


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
