Green Infrastructure (GI) is crucial for urban climate adaptation, providing ecosystem services like mitigating the Urban Heat Island effect and enhancing stormwater man-agement, alongside benefits for public health and biodiversity. Effective GI imple-mentation remains challenging, particularly in dense, rapidly urbanized Mid Adriatic coastal cities, classified as climate hotspots like other Mediterranean contexts. This paper presents a replicable applied methodology for detailed GI design scenarios, developed through the EU-funded LIFE+ A_GreeNet project. The project aims to bridge the theo-ry-practice gap, enabling pilot implementations in multiple Italian Mid Adriatic coastal municipalities. The research details a comprehensive, multi-disciplinary, five-phase process applied to the Sant’Antonio district of San Benedetto del Tronto—a dense, traf-ficked urban area projected to face "extremely strong heat stress" by 2050. Design in-terventions included spatial optimization, strategic species replacement, creation of vegetated bioretention basins, and systematic pavement de-sealing. The application of the model demonstrated significant improvements: a substantial increase in permeable surface area, a measurable reduction in the UTCI index, a series of benefits resulting from increased green space and enhanced meteorological water management. This research offers local authorities a tangible model to accelerate climate-adaptive solutions, showing how precise GI design creates resilient, comfortable, and human-centered urban spaces.