Submitted:
12 December 2025
Posted:
17 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Tested Sewage
2.2. Ultrafiltration Process
2.3. Research Installation
2.4. Analysed Parameters
2.5. Research Methodology

3. Results and Discussion













4. Conclusions
- FP100 membranes (MWCO 100 kDa) exhibited higher performance and better fouling resistance, resulting in higher permeate flux and more linear and predictable performance decline.
- ESP04 membranes (MWCO 4 kDa) achieved superior reductions in chemical oxygen demand (COD) and non-ionic surfactants (NIS), while FP100 membranes showed minimal separation of NIS and negligible reduction of COD.
- Both membranes significantly reduced wastewater turbidity, confirming their effectiveness in removing suspensions and colloids.
- Increasing contaminant concentration in the feed due to retentate recirculation in the batch system led to increased fouling and gradual deterioration of filtration parameters over time.
- After approximately 6 hours of operation, a sharp decline in permeate flux required membrane regeneration.
- Regeneration of the FP100 membrane completely restored original performance, while the ESP04 membranes recovered about 70% of initial flux.
- The strongly negative zeta potential of the new FP100 membrane (-30 to -35 mV at pH value from 7 to 8, typical for wastewater from the rubber industry at pH 7.5–7.9) provides high fouling resistance against anionic colloids and organic substances by electrostatic repulsion, contributing to superior performance compared to ESP04 and stability of the process.
- After filtration, the zeta potential shifted towards positive values (particularly at pH <5) due to adsorption of organic contaminants, colloids and surfactants. SEM and EDS analyses confirmed deposits (Al, Si, Na, S, Mg at 1–3%) and local accumulations, indicating the need for regular regeneration to restore hydrophilicity and separation properties.
- The permeate of both membranes met the quality standards for reuse in plant production processes, crucial for the sustainable management of water resources in industry.
Author Contributions
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DOAJ | Directory of open access journals |
| TLA | Three letter acronym |
| LD | Linear dichroism |
References
- Wimalaweera, I. P.; Wei, Y.; Zuo, F.; Tang, Q.; Ritigala, T.; Wang, Y.; Zhong, H.; Weerasooriya, R.; Jinadasa, S.; Wergoda, S. Enhancing Rubber Industry Wastewater Treatment through an Integrated AnMBR and A/O MBR System: Performance, Membrane Fouling Analysis, and Microbial Community Evolution. Membranes 2024, 14, 130. [Google Scholar] [CrossRef]
- Mostoni, S.; D’Arienzo, M.; Di Credico, B.; Armelao, L.; Rancan, M.; Dire, S.; Callone, E.; Donetti, R.; Susanna, A.; Scotti, R. Design of a Zn Single-Site Curing Activator for a More Sustainable Sulfur Cross-Link Formation in Rubber. Ind Eng Chem Res 2021, 60, 10180–10192. [Google Scholar] [CrossRef]
- Chen, L.; Guo, X.; Luo, Y.; Jia; Chen, Z.; Jia, Y.D. Inorganic and organic hybrid nanoparticles as multifunctional crosslinkers for rubber vulcanization with high-filler rubber interaction. Polymers 2018, 10, 1138. [Google Scholar] [CrossRef]
- Alam, M. N.; Kumar, V.; Jeong, S. U.; Park, S. S. Enhancing Rubber Vulcanization Cure Kinetics: Lowering Vulcanization Temperature by Addition of MgO as Co-Cure Activator in ZnO-Based Cure Activator Systems. Polymers 2024, 16, 876. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhang, Z.; Yin, T.; Yang, S.; Shao, J.; Manchester, W. Research status of semi-permanent release agent. MATEC Web of Conferences 2021, 353, 01004. [Google Scholar] [CrossRef]
- Yang, M.; Li, L.; Zhu, Z.; Ma, H. Research progress on eco-friendly rubber release agents. Colloid and Polymer Science 2025, 303, 163–174. [Google Scholar] [CrossRef]
- Ezugbe, E. O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Haas, R.; Opitz, R.; Grischek, T.; Otter, P. The AquaNES project: Coupling riverbank filtration and ultrafiltration in drinking water treatment. Water 2019, 11, 18. [Google Scholar] [CrossRef]
- Sathish Kumar, R.; Arthanareeswaran, G. Nano-curcumin incorporated polyethersulfone membranes for enhanced anti-biofouling in treatment of sewage plant effluent. Materials Science and Engineering C 2019, 94, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, S.; Yang, J.; Ma, A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers 2022, 14, 1167. [Google Scholar] [CrossRef]
- Hernández, K.; Muro, C.; Ortega, R. E.; Velazquez, S.; Riera, F. Water recovery by treatment of food industry wastewater using membrane processes. Environmental Technology 2021, 42, 775–788. [Google Scholar] [CrossRef]
- Ibrahim, M.; Nawaz, M.H.; Rout, P.R.; Lim, J.W.; Mainali, B.; Shahid, M.K. Advances in Produced Water Treatment Technologies: An In-Depth Exploration with an Emphasis on Membrane-Based Systems and Future Perspectives. Water 2023, 15, 2980. [Google Scholar] [CrossRef]
- Ullah, I.; Naseer, M.N.; Zaidi, A.A.; Kumar, M.; Rasool, U.; Kim, B. Research hotspots and development trends in the rubber industry wastewater treatment: a quantitative analysis of literature. Journal of Rubber Research 2023, 26, 249–260. [Google Scholar] [CrossRef]
- Song, X.; Ji, H.; Zhao, W.; Sun, S.; Zhao, C. Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. Advanced Membranes 2021, 1, 100013. [Google Scholar] [CrossRef]
- Jassim, Z. S.; Braihi, A. J.; Shabeeb, K. M. Polymeric Membranes for Industrial Wastewater Treatment: A Review. International Journal of Environmental Impacts 2024, 7, 395–408. [Google Scholar] [CrossRef]
- Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Khadivi, M.A.; Astinchap, B.; Moradian, R. Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. Journal of Membrane Science 2013, 444, 184–191. [Google Scholar] [CrossRef]
- Świerczyńska, A. A.; Bohdziewicz, J.; Kamińska, G.; Wojciechowski. Influence of the type of membrane-forming polymer on the membrane fouling. Environment Protection Engineering 42(vol. 2016, 2), 197–210. [CrossRef]
- Dallaev, R; Pisarenko, T.; Sobola, D; Orudzhev, F.; Ramazanov, S.; Treka, T. Brief Review of PVDF Properties and Applications Potential. Polymers 2022, 14, 4793. [Google Scholar] [CrossRef]
- Martini, S.; Mardwita, M.; Afroze, S.; Yusmartini, E. S.; Kharismadewi, D. The use of PVDF-based membrane for treating industrial wastewater in the perspective of fabrication technique and fouling mitigation via additive blending and surface coating. Jurnal Teknologi 2024, 86, 217–234. [Google Scholar] [CrossRef]
- Kamaludin, R.; Abdul Majid, L.; Othman, M.H.D.; Mansur, S.; Sheikh Abdul Kadir, S.H.; Wong, K.Y.; Khongnakorn, W.; Puteh, M.H. Polyvinylidene Difluoride (PVDF) Hollow Fiber Membrane Incorporated with Antibacterial and Anti-Fouling by Zinc Oxide for Water and Wastewater Treatment. Membranes 2022, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Proner, M. C.; Marques, I.R.; Ambrosi, A.; Rezadori, K.; Da Costa, C.; Zin, G.; Tres, M. V.; Di Luccio, M. Impact of MWCO and dopamine/polyethyleneimine concentrations on surface properties and filtration performance of modified membranes. Membranes 10 2020(239), 1–18. [CrossRef]
- KARTA DANYCH BEZPIECZEŃSTWA Rewizja: 1.0 Rheolease ® 487LG. Available online: www.performancefluids.co.uk.
- Ratnaningsih, W.; Widiyati, C. Dispresing agents wastewater quality from latex gloves manufacturing by treatment using Al2(SO4)3 and pac coagulant. EDISI 2023, 2, 69–77. [Google Scholar]
- Li, J. X.; Sanderson, R. D.; Chai, G. Y. A focused ultrasonic sensor for in situ detection of protein fouling on tubular ultrafiltration membranes. Sensors and Actuators B Chemical 2006, 114, 182–191. [Google Scholar] [CrossRef]
- Nilusha, R. T.; Wei, Y. New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). Membranes 2021, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Trusek, A.; Wajsprych, M.; Noworyta, A. Low-and high-pressure membrane separation in the production of process water for coke quenching. Membranes 2021, 11, 937. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, P.; Gryta, M. Application of Polymeric Tubular Ultrafiltration Membranes for Separation of Car Wash Wastewater. Membranes 2024, 14, 210. [Google Scholar] [CrossRef]
- LCI 400 Chemical Oxygen Demand (COD) 0-1000 Mg/L Chemical Oxygen Demand LCI 400. www.hach.com.
- LCK 433 Nonionic Surfactants 6.0-200.0 Mg/L Surfactant as TRITON x 100 LCK 433. www.hach.com.
- Laera, G.; Jin, B.; Lopez, A. Application of sequencing batch membrane bioreactors (SB-MBR) for the treatment of municipal wastewater. Water Science and Technology 2011, 64, 391–396. [Google Scholar] [CrossRef]
- Burlace, L.; Davies, P. A. Fouling and fouling mitigation in batch reverse osmosis: review and outlook. Desalination Water Treat 2022, 249, 1–22. [Google Scholar] [CrossRef]
- Szwast, M.; Suchecka, T.; Piatkiewicz, W. Membranes: Improving batch membrane filtration. Filtration and Separation 2013, 50, 38–41. [Google Scholar] [CrossRef]
- Chheang, M.; Hongprasith, N.; Ratanatawanate, C.; Lohwacharin, J. Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter. Membranes 2022, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, L.; Qiu, L.; Yu, S.; Liu, P.; Zhu, Y.; Hu, J.; Liu, Z.; Zhao, D.; Yang, H. Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Eiciency and molecular mechanisms. Journal of Membrane Science 2018, 545, 348–357. [Google Scholar] [CrossRef]
- Rudolph, G.; Schagerlöf, H.; Krogh, K. B. M.; Jönsson, A. S.; Lipnizki, F. Investigations of alkaline and enzymatic membrane cleaning of ultrafiltration membranes fouled by thermomechanical pulping process water. Membranes 2018, 8, 91. [Google Scholar] [CrossRef]
- Kingma, A. J. Compatibility of nonionic surfactants with membrane materials and their cleaning performance. Food and Bioproducts Processing 2015, 93, 304–309. [Google Scholar] [CrossRef]
- Proner, M. C.; Marques, I.R.; Ambrosi, A.; Rezzadori, K.; Da Costa, C.; Zin, G.; Tres, M.V.; Di Luccio, M. Impact of MWCO and dopamine/polyethyleneimine concentrations on surface properties and filtration performance of modified membranes. Membranes 2020, 10, 239. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, Y.; Zhang, Z.; Mao, Y.; Wang, R.; Tong, X.; Xue, S.; Wang, H.; Hu, H. Molecular weight insight into critical component contributing to reverse osmosis membrane fouling in wastewater reclamation. NPJ Clean Water 2024, 7, 62. [Google Scholar] [CrossRef]
- Gryta, M.; Tomczak, W. Changes in Tubular PVDF Membrane Performance During Initial Period of Pilot Plant Operation. Membranes 2025, 15, 119. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, K.; Yu, J.; Huang, B.; Wang, X.; Liang, S.; Wei, C.; Wen, X.; Huang, X. A simple method to identify the dominant fouling mechanisms during membrane filtration based on piecewise multiple linear regression. Membranes 2020, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef]
- Miller, D. J.; Kasemset, S.; Paul, D. R.; Freeman, B. D. Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions. Journal of Membrane Science 2014, 454, 505–515. [Google Scholar] [CrossRef]
- Huang, J.; Liu, L.; Zeng, G.; Li, X.; Peng, L.; Jiang, Y.; Zhao, Y.; Huang, X. Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration. Desalination 2014, 335, 1–8. [Google Scholar] [CrossRef]
- Ruigómez, I.; González, E.; Rodríguez-Gómez, L.; Vera, L. Fouling control strategies for direct membrane ultrafiltration: Physical cleanings assisted by membrane rotational movement. Chemical Engineering Journal 2022, 436, 135161. [Google Scholar] [CrossRef]
- Klimonda, A.; Kowalska, I. Separation and concentration of cationic surfactant solutions with the use of ceramic modules. Environment Protection Engineering 2020, 46, 41–51. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A. F.; Othman, M. H. D.; Shirazi, M. M. A. Critical Flux and Fouling Analysis of PVDF-Mixed Matrix Membranes for Reclamation of Refinery-Produced Wastewater: Effect of Mixed Liquor Suspended Solids Concentration and Aeration. Membranes 2022, 12, 161. [Google Scholar] [CrossRef]
- Abulkhair, H.; Moujdin, I. A.; Kaddoura, B.; Khan, M. S. Fouling Mitigation in Membrane Distillation Using Pulsation Flow Technique. Processes 2023, 11, 2759. [Google Scholar] [CrossRef]
- Gryta, M.; Tomczak, W. Changes in Tubular PVDF Membrane Performance During Initial Period of Pilot Plant Operation. Membranes 2025, 15, 119. [Google Scholar] [CrossRef]
- Rachman, R. A.; Widiastuti, N.; Purnomo, A.S.; Widjaja, A.; Mumtazah, Z.; Darmayanti, R.F.; Muharja, M. Permeate flux recovery and removal foulant performances of hollow fiber polyvinylidene fluoride membrane bioreactor with peroxodisulfate activated iron (II) sulfate as a chemical cleaning agent. South African Journal of Chemical Engineering 2024, 48, 436–450. [Google Scholar] [CrossRef]
- Benítez, F. J.; Real, F. J.; Acero, J. L.; Casas, F. Use of ultrafiltration and nanofiltration processes for the elimination of three selected emerging contaminants: Amitriptyline hydrochloride, methyl salicylate and 2-Phenoxyethanol. Environment Protection Engineering 2017, 43, 125–141. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Lee, H.J.; Ganzoury, M.A.; Zhang, N.; De Lannoy, Ch.F. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS EST Engineering 2022, 2, 1574–1598. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Gryta, M. The Application of Polyethersulfone Ultrafiltration Membranes for Separation of Car Wash Wastewaters: Experiments and Modelling. Membranes 2023, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Woźniak, P.; Gryta, M.; Grzechulska-Damszel, J.; Daniluk, M. Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study. Membranes 2024, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Smułka, A.; Olejnik, A.; Zarzeczańska, D.; Wcisło, A.; Ryl, J.; Zieliński, A.; Ossowski, T. pH-mediated charge tuning of chitosan membrane: a smart approach to control electrochemical selectivity. Electrochimica Acta 2025, 533, 146541. [Google Scholar] [CrossRef]
- Martín, A.; Martinez, F; Malfeito, J.; Palacio, L.; Pradanos, P.; Hernandez, A. Zeta Potential of Membranes as a Function of pH Optimization of Isoelectric Point Evaluation. Journal of Membrane Science 2003, 213, 225–230. [Google Scholar] [CrossRef]
- Fu, W.; Hua, L.; Zhang, W. Experimental and Modeling Assessment of the Roles of Hydrophobicity and Zeta Potential in Chemically Modified Poly(ether sulfone) Membrane Fouling Kinetics. Industrial & Engineering Chemistry Research 2017, 56, 8580–8589. [Google Scholar] [CrossRef]
- Breite, D.; Went, M.; Prager, A.; Schulze, A. The critical zeta potential of polymer membranes: How electrolytes impact membrane fouling. The Royal Society of Chemistry 2016, 6, 98180–98189. [Google Scholar] [CrossRef]
- Wenten, I. G.; Bazant, M. Z.; Khoiruddin, K. Mitigating electrodialysis membrane fouling in seawater desalination. Separation and Purification Technology 2024, 345, 127228. [Google Scholar] [CrossRef]
- Breite, D.; Went, M.; Prager, A.; Kühnert, M.; Schulze, A. Charge separating microfiltration membrane with pH-dependent selectivity. Polymers 2019, 11, 3. [Google Scholar] [CrossRef]
- Wimalaweera, I. P.; Wei, Y.; Zuo, F.; Tang, Q.; Ritigala, T.; Wang, Y.; Zhong, H.; Weerasooriya, R.; Jinadasa, S.; Wergoda, S. Enhancing Rubber Industry Wastewater Treatment through an Integrated AnMBR and A/O MBR System: Performance, Membrane Fouling Analysis, and Microbial Community Evolution. Membranes 2024, 14, 130. [Google Scholar] [CrossRef]
- Ho, K. C.; Chan, M. K.; Chen, Y. M.; Subhramaniyun, P. Treatment of rubber industry wastewater review: Recent advances and future prospects. Journal of Water Process Engineering 2023, 52, 103559. [Google Scholar] [CrossRef]
- Chen, M.; Ding, W.; Zhou, M.; Zhang, H.; Ge, Ch.; Cui, Z.; Xing, W. Fouling mechanism of PVDF ultrafiltration membrane for secondary effluent treatment from paper mills. Chemical Engineering Research and Design 2021, 167, 37–45. [Google Scholar] [CrossRef]
- Miao, R.; Wang, L.; Feng, L.; Liu, Z. W.; Lv, Y. T. Understanding PVDF ultrafiltration membrane fouling behaviour through model solutions and secondary wastewater effluent. Desalination and Water Treatment 2014, 52, 5061–5067. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Yuan, X.; Li, P.; Yu, Y.; Yang, W.; Zhao, S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. Membranes 2023, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Gryta, M.; Woźniak, P.; Daniluk, M. Changes in the Separation Properties of Aged PVDF Ultrafiltration Membranes During Long-Term Treatment of Car Wash Wastewater. Membranes 2025, 15, 66. [Google Scholar] [CrossRef] [PubMed]


| Parameter | COD [mg/L] |
NIS [mg/L] |
Turbidity [NTU] |
Conductivity [µS/cm] | pH | TDS [mg/L] |
TOC [mg/L] |
TC [mg/L] |
IC [mg/L] |
|---|---|---|---|---|---|---|---|---|---|
| WW1* | 219.0 | 73.9 | 51.20 | 287 | 7.8 | 184 | 98.5 | 126.1 | 27.6 |
| WW2 | 240.0 | 86.5 | 50.30 | 295 | 7.7 | 189 | 108.0 | 135.5 | 27.3 |
| WW3 | 204.0 | 78.1 | 48.70 | 282 | 7.9 | 180 | 91.8 | 119.6 | 27.8 |
| WW4 | 418.0 | 145.0 | 52.30 | 331 | 7.9 | 212 | 94.3 | 121.9 | 27.6 |
| WW5 | 630.0 | 151.0 | 38.40 | 195 | 7.9 | 125 | 139.3 | 166.5 | 27.2 |
| WW6 | 488.0 | 180.0 | 70.30 | 318 | 7.3 | 203 | 133.7 | 162.2 | 28.5 |
| Membrane | MWCO | Material | Diameter | pH | Max TMP | Max T |
|---|---|---|---|---|---|---|
| ESP04 | 4 kDa | PES | 12,5 mm | 1 – 14 | 30 bar | 65 oC |
| FP100 | 100 kDa | PVDF | 12,5 mm | 1.5 - 12 | 10 bar | 80 oC |
| Membrane’s type |
Quantity of tubes | Memrane’s surface | TMP | Initial flow |
|---|---|---|---|---|
| ESP04 | 18 | 0.9 m2 | 4.0 bar | 222 L/m2/h |
| FP100 | 18 | 0.9 m2 | 4.0 bar | 762 L/m2/h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
