Preprint
Article

This version is not peer-reviewed.

Dynamic Finite Element and Experimental Strain Analysis of a Passenger Car Rear Axle for Durable and Sustainable Suspension Design

Submitted:

09 December 2025

Posted:

19 December 2025

You are already at the latest version

Abstract
This paper proposes an integrated numerical–experimental methodology for the durability assessment and optimisation of a passenger-car rear axle. A dedicated rear-suspension durability test bench was designed to impose a controlled cyclic vertical excitation on a dependent axle, reproducing service-like translational and rotational amplitudes of the beam and stabilizer bar. A detailed flexible multibody model of the bench–axle system was developed in MSC ADAMS and used to tune the kinematic excitation and determine an equivalent design load at the wheel spindles, consistent with the stiffness of the suspension assembly. Experimental strain measurements at nine locations on the axle, acquired with strain-gauge instrumentation on the bench, were converted into stresses and used to validate an explicit dynamic finite element model in ANSYS. The FE predictions agree with the experiments within about 10% at the beam mid-span and correctly identify a critical region at the junction between the side plate and the arm, where peak von Mises stresses of about 104 MPa occur. The validated model then supports a response-surface-based optimisation of the safety-critical wheel spindle, yielding a geometry that lowers spindle-fillet stresses to around 180–185 MPa under the maximum admissible wheel load, with only a modest mass penalty.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated