Submitted:
04 December 2025
Posted:
08 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Axiomatic Systems in Geometry
1.2. Axiomatic Systems in Physics
1.3. There Can Be New Contents Concerning Classical Mechanics
1.4. A Brief Review of Dark Matter Research
1.5. Review of Particle Kinematics
2. Original and Modified Newton’s Three Laws
3. Particle Dynamics
3.1. Momentum of a Particle and the Law of Conservation of Momentum
3.1.1. Definition of Momentum
3.1.2. Momentum Theorem
3.1.3. Law of Conservation of Momentum
3.2. Inertial Force
3.3. Angular Momentum of a Particle and the Law of Conservation of Angular Momentum
3.3.1. Torque
3.3.2. Angular Momentum
Definition of angular momentum
3.4. Negative Kinetic Energy of a Particle and the Law of Conservation of Negative Kinetic Energy
3.4.1. Work and Power
3.4.2. Negative Kinetic Energy
3.5. Mechanical Energy
3.5.1. Force Field, Conservative Force, and Potential Energy
3.5.2. Mechanical Energy and the Law of Conservation of Mechanical Energy
4. Motion Orbit of A Particle Acted upon by A Force
4.1. Central Force
4.1.1. Definition of Central Force
4.1.2. Three Typical Central Forces
4.1.3. Conservation of Angular Momentum in A Central Force Field
4.2. Motion Under Inverse-Square Force
4.3. Motion Under Linear Force
4.4. Motion upon Electromagnetic Force
4.4.1. Electromagnetic Force
4.4.2. Constant Uniform Electric Field
4.4.3. Constant Uniform Magnetic Field
4.4.4. Constant Uniform Electric and Magnetic Fields
5. Dynamics of NKE Particle Systems
5.1. Kinematics of Particle Systems
5.2. Definition of Center of Mass
5.3. Momentum Theorem and Law of Conservation of Momentum
5.4. Angular Momentum Theorem and Law of Conservation of Angular Momentum
5.5. Angular Momentum Theorem for the Centroid
5.6. Kinetic Energy Theorem and Law of Conservation of Mechanical Energy
5.7. König’s Theorem
5.8. Kinetic Energy Theorem for the Centroid
6. Dynamics of Mixed Particle Systems
6.1. Mixed Particle Systems
6.2. Definition of Centroid
6.3. Momentum Theorem and Law of Conservation of Momentum
6.4. Momentum Theorem for the Centroid
6.5. Angular Momentum Theorem and Law of Conservation of Angular Momentum
6.6. Angular Momentum Ttheorem with Respect to the Centroid
6.7. Kinetic Energy Theorem and Law of Conservation of Mechanical Energy
6.8. König’s Theorem
6.9. Kinetic Energy Theorem with Respect to the Centroid
6.10. Kinetic Energy of An Isolated System
6.11. Bullet Cluster: A Possible Example of Mixed System
7. Lagrangian Mechanics
7.1. Action and Euler-Lagrange Equation
7.2. NKE System
7.3. Mixed System
7.4. Examples of the Motion of a Single NKE Particle
7.4.1. Free Particle
7.4.2. Harmonic Potential
7.4.3. One-Dimensional Linear Potential
7.4.4. One-Dimensional Harmonic Potential plus Linear Potential
7.4.5. Electromagnetic Potential
8. Relativistic Dynamics of A Particle
8.1. Lorentz Transformation of Four-Vectors
8.2. Dynamical Formulas
8.3. Equivalence of Mass and Negative Energy
8.4. Lagrangian Mechanics
8.4.1. Free Particle
| PKE object | NKE object | |
|---|---|---|
| Newton’s second law |
||
| Energy of free particle | ||
| Nonrelativistic approximation the free particle energy | ||
| Momentum-velocity relationship | ||
| Mass-energy relationship | ||
| Lagranian of free particle | ||
| Differential form of work-energy theorem | ||
| Integral form of work-energy theorem | ||
| Hamilton-Jacobi equation |
8.4.2. NKE Particle in Electromagnetic Potential
9. Virial Theorem
9.1. Definition of Virial and Virial Theorem
9.2. Low-Momentum Motion
9.3. Relativistic Motion
10. Discussion and Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Euclid. Euclid’s Elements. In Great Books of the Western World; Heath, Thomas, Translator; Encyclopedia Britannica, Inc.: Chicago, London, Toronto, 1952. [Google Scholar]
- Godinho, L.; Natário, J. An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity; Springer International Publishing Switzerland: Heidelerg, London, 2014. [Google Scholar] [CrossRef]
- Szekeres, S. Kinematic geometry; an axiomatic system for Minkowski space-time M. L. Urquhart in Memoriam. Journal of the Australian Mathematical Society 8196(8), 134–160. [CrossRef]
- Schutz, J.W. An axiomatic system for Minkowski space–time. J. Math. Phys. 1981, 22, 293–302. [Google Scholar] [CrossRef]
- Schutz, J.W. Foundations of Special Relativity: Kinematic Axioms for Minkowski Space-Time. In Lecture Notes in Mathematics; Springer: Berlin, 1973; Vol. 361. [Google Scholar]
- Ehlers, J. Foundations of Special Relativity Theory Special Relativity: Will it Survive the Next 101 years? In Lecture Notes in Physics); Ehlers, J., Lammerzahl, C., Eds.; Springer-Verlag: Berlin Heidelberg, 2006; Vol. 702, pp. 35–44. [Google Scholar] [CrossRef]
- Fadeev, N.G. Physical Nature of Lobachevsky Parallel Lines and a New Inertial Frame Transformation. AIP Conf. Proc. 2006, 861, 320–327. [Google Scholar] [CrossRef]
- R. Schmoetten, R.; Palmer, J.E.; Fleuriot, J.D. Towards Formalising Schutz’ Axioms for Minkowski Spacetime in Isabelle/HOL. Journal of Automated Reasoning 2022, 66, 953–988. [Google Scholar] [CrossRef]
- Kontsevich, M.; Segal, G. Wick Rotation and the Positivity of Energy in Quantum Field Theory. Quartely Journal of Mathematics 2021, 72(1-2), 673–699. [Google Scholar] [CrossRef]
- Hakobyan, T.; Nersessian, A. Lobachevsky geometry of (super)conformal mechanics. Physics Letters A 2009, 373, 1001–1004. [Google Scholar] [CrossRef]
- Newton, I. The Mathematical Principles of Natural Philosophy: by Sir Isaac Newton; Translated into English by Andrew Motte: To Which Are Added, Newton’s System of the World; A Short Comment On, and Defense Of, the Principia, by William Emerson; With the Law of the Moon’s Motion According to Gravity, by John Machin; Publisher: Printed for Sherwood, Neely, and Jones, Paternoster-Row; and Davis and Dickson, St. Martin’s Le Grand (London); 1819; Volume 1, Available online: https://go.gale.com/ps/i.do?p=NCCO&u=tsinghua&v=2.1&it=r&id=GALE%7CBCSJAK884159790.
- Purcell, E.M. Electricity and magnetism; McGraw-Hill: New York, 1985. [Google Scholar]
- Kudar, J. Über die Verweilzeit der Korpuskeln im Gebiet der “negativen kinetischen Energie”. Z. Physik 1929, 58, 48–51. [Google Scholar] [CrossRef]
- Aharonov, Y.; Popescu, S.; Rohrlich, D.; Vaidman, L. Measurements, Errors, and Negative Kinetic-Energy. Phys. Rev. A 1993, 48, 4084–4090. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, J.; Côté, R. Rydberg electron-atom scattering in forbidden regions of negative kinetic energy. J. Phys. B: At. Mol. Opt. Phys. 2020, 53, 114002. [Google Scholar] [CrossRef]
- Berry, M.V. Quantum backflow, negative kinetic energy, and optical retro-propagation. J. Phys. A: Math. Theor. 2010, 43, 415302.Online at stacks.iop.org/JPhysA/43/415302. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.; Liu, Y.; Luo, G. Negative Kinetic Energy Supersymmetric Quantum Mechanics. Chin. J. Phys. 2025, 96, 1178–1190. [Google Scholar] [CrossRef]
- Scherrer, J.R.J.; Sen, A.A. Phantom dark energy models with negative kinetic term. Phys. Rev. D 2006, 74, 083501. [Google Scholar] [CrossRef]
- Rahaman, F.; Kalam, M.; Rahman, K.A. Wormholes Supported by Scalar Fields With Negative Kinetic Energy. International Journal of Modern Physics A 2009, 24, 5007–5018. [Google Scholar] [CrossRef]
- Andrade, T.; Kelly, W.R.; Marolf, D. Einstein–Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes. Classical and Quantum Gravity 2015, 32, 195017. [Google Scholar] [CrossRef]
- Deffayet, C.; Held, A.; Mukohyamad, S.; Vikman, A. Global and local stability for ghosts coupled to positive energy degrees of freedom. Journal of Cosmology and Astroparticle Physics 20th Anniversary Special Issue JCAP 2023, 11, 031. [Google Scholar] [CrossRef]
- Frascaa, M.; Ghoshalb, A.; Koshelevc, A.S. Confining complex ghost degrees of freedom. Physics Letters B 2023, 841, 137924. [Google Scholar] [CrossRef]
- Gross, C.; Strumia, A.; Teresi, D.; Zirilli, M. Is negative kinetic energy metastable? (provided by Clarivate). Phys. Rev. D 2021, 103, 115025. [Google Scholar] [CrossRef]
- Dirac, P.A.M.; Dirac, P.A.M.; The quantum theory of the electron. Proceedings of the Royal Society of London Series A 1928, 117(778), 610-624. DOI: 10.1098/rspa.1928.0023; Dirac, P.A.M. The quantum theory of the electron - Part II. Proceedings of the Royal Society of London Series A 1928, 117 1928, 118, 610–624 351–361. [Google Scholar] [CrossRef]
- Wang, H.Y. Fundamental formalism of statistical mechanics and thermodynamics of negative kinetic energy systems. J. Phys. Commun. 2021, 5, 055012. [Google Scholar] [CrossRef]
- Wang, W.H. The modified fundamental equations of quantum mechanics. Physics Essays 2022, 35, 152–164. [Google Scholar] [CrossRef]
- Dirac, P.A.M. A Theory of Electrons and Protons. Proceedings of the Royal Society of London. Series A Containing Papers of a Mathematical and Physical Character 1930, 126, 360–365. Available online: https://www.jstor.org/stable/95359.
- Wang, H.Y. The mathematical physical equations satisfied by the retarded and advanced Green’s functions. Physics Essays 2022, 35, 380–391. [Google Scholar] [CrossRef]
- Wang, H.Y. The irreversibility of microscopic motions. Frontiers in Physics Sec. Statistical and Computational Physics 2024. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion cosmology. Physics Reports 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Liu, G.C.; Ng, K.W. Axion dark matter induced cosmic microwave background B modes. Phys. Dark Univ. 2017, 16, 22–25. [Google Scholar] [CrossRef]
- Efstathiou, G.; Rosenberg, E.; Poulin, V. Improved Planck Constraints on Axionlike Early Dark Energy as a Resolution of the Hubble. Phys. Rev. Lett. 2024, 132, 221002. [Google Scholar] [CrossRef] [PubMed]
- Borowiec, A.; Postolak, M. Is it possible to separate baryonic from dark matter within the Λ-CDM formalism? Phys. Lett. B 2025, 860, 139176. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomoud, V.K.; Sharov, G.S. Dynamical dark energy from F(R) gravity models unifying inflation with dark energy: Confronting the latest observational data. Journal of High Energy Astrophysics 2026, 50, 100471. [Google Scholar] [CrossRef]
- Sikivie, P. Axion dark matter and the 21-cmsignal. Phys. Dark Univ. 2019, 24, 100289. [Google Scholar] [CrossRef]
- Tobar, M.E.; McAllister, B.T.; Goryachev, M. Modified axion electrodynamics as impressed electromagnetic sources through oscillating back ground polarization and magnetization. Phys. Dark Univ. 2019, 16, 100339. [Google Scholar] [CrossRef]
- Bertone, G. The moment of truth for WIMP dark matter. Nature (London) 2010, 468, 389–393. [Google Scholar] [CrossRef]
- Andreas, S.; Goodsell, M.D.; Ringwald, A. Dark matter and dark forces from a supersymmetric hidden sector. Phys. Rev. D 2013, 87, 025007. [Google Scholar] [CrossRef]
- Alexandre, A.; Dvali, G.; Koutsangelas, E. New mass window for primordial black holes as dark matter from the memory burden effect. Phys. Rev. D 2024, 110, 036004. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; et al. Experimental Limits on Solar Reflected Dark Matter with a New Approach on Accelerated-Dark-Matter–Electron Analysis in Semiconductors. Phys. Rev. Letts 2024, 132, 171001. [Google Scholar] [CrossRef]
- Smarra, C.; et al. Second Data Release from the European Pulsar Timing Array: Challenging the Ultralight Dark Matter Paradigm. Phys. Rev. Lett. 2023, 131, 171001. [Google Scholar] [CrossRef] [PubMed]
- Steigman, G.; Turner, M.S. Cosmological constraints on the properties of weakly interacting massive particles. Nucl. Phys. B 1985, 253, 375–386. [Google Scholar] [CrossRef]
- Hooper, D.; Weiner, N.; Xue, W. Dark forces and light dark matter. Phys. Rev. D 2012, 86, 056009. [Google Scholar] [CrossRef]
- Cong, L.; Ji, W. Spin-dependent exotic interactions. Rev. Mod. Phys. 2025, 97, 025005. [Google Scholar] [CrossRef]
- Zhang, Y. Self-interacting dark matter without direct detection constraints. Phys. Dark Univ. 2017, 15, 82–89. [Google Scholar] [CrossRef]
- Baer, K.; Choi, K.Y.; Kim, J.E.; Roszkowski, L. Dark matter production in the early Universe: Beyond the thermal WIMP paradigm. Phys. Rep. 2015, 555, 1–60. [Google Scholar] [CrossRef]
- Frigerio, M.; Hambye, T.; Masso, E. Sub-GeV dark matter as Pseudo-Nambu-Goldstone Bosons from the seesaw scale. Phys. Rev. X 2011, 1, 021026. [Google Scholar] [CrossRef]
- Alberta, A. Towards the next generation of simplified Dark Matter models. Phys. Dark Univ. 2017, 16, 49–70. [Google Scholar] [CrossRef]
- Buckley, M.R.; Peter, A.H.G. Gravitational probes of dark matter physics. Phys. Rep. 2018, 761, 1–60. [Google Scholar] [CrossRef]
- Arvikar, P.; Gautam, S.; Venneti, A.; Banik, S. Exploring fermionic dark matter admixed neutron stars in the light of astrophysical observations. Phys. Rev. D 112, 023021. [CrossRef]
- Cyncynates, D.; Weiner, Z.J. Experimental targets for dark photon dark matter. Phys. Rev. D 2025, 111, 103535. [Google Scholar] [CrossRef]
- McKeen, D.; Omar, A. Early dark energy during big bang nucleosynthesis. Phys. Rev. D 2024 2024, 110, 103514. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Karwal, T. Review Article The Ups and Downs of Early Dark Energy solutions to the Hubble tension: A review of models, hints and constraints circa. Phys. Dark Univ. 2023, 42, 101348. [Google Scholar] [CrossRef]
- Carloni, Y.; Luongo, O.; Muccino, M. Does dark energy really revive using DESI 2024 data? Phys. Rev. D 2025, 111, 023512. [Google Scholar] [CrossRef]
- Bai, Y.; Carena, M.; Lykken, J. Dilaton-assisted dark matter. Phys. Rev. Lett. 2009, 103, 261803. [Google Scholar] [CrossRef]
- Shepherd, W.; Tait, T.P.M.; Zaharijas, G. Bound states of wekly interacting dark matter. Phys. Rev. D 2009, 79, 055022. [Google Scholar] [CrossRef]
- Fox, J.; Poppitz, E. Leptophilic dark matter. Phys. Rev. D 2009, 79, 083528. [Google Scholar] [CrossRef]
- Harnik, R.; Kribs, G.D. Effective theory of Dirac dark matter. Phys. Rev. D 2009, 79, 095007. [Google Scholar] [CrossRef]
- Alves, D.S.M.; Behbahani, S.R.; Schuster, P.; Wacker, J. Composite inelastic dark matter. Phys. Lett. B 2010, 692, 323–326. [Google Scholar] [CrossRef]
- Hambye, T.; Tytgat, M.H.G. Confined hidden vector dark matter. Phys. Lett. B 2010, 683, 39–41. [Google Scholar] [CrossRef]
- Chang, S.; Weiner, N.; Yavin, Y. Magnetic inelastic dark matter. Phys. Rev. D 2010, 82, 125011. [Google Scholar] [CrossRef]
- Aarssen, L.G.; Bringmann, T.; Goedecke, Y.C. Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates. Phys. Rev. D 2012, 85, 123512. [Google Scholar] [CrossRef]
- Goldman, I.; Mohapatra, R.N.; Nussinov, S.; Rosenbaum, D.; Teplitz, V. Possible implications of asymmetric fermionic dark matter for neutron stars. Phys. Lett. B 2013, 725(4-5), 200–207. [Google Scholar] [CrossRef]
- Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavón, D. Further understanding the interaction between dark energy and dark matter: current status and future directions. Rep. Prog. Phys. 2024, 87, 036901. [Google Scholar] [CrossRef] [PubMed]
- Montani, G.; Carlevaro, N.; Escamilla, L.A.; Valentino, E.D. Kinetic model for dark energy—dark matter interaction: Scenario for the hubble tension. Phys. Dark Univ. 2025, 48, 101848. [Google Scholar] [CrossRef]
- Diamond, M.; Schuster, P. Searching for light dark matter with the SLAC millicharge experiment. Phys. Rev. Lett. 2013, 111, 221803. [Google Scholar] [CrossRef]
- Gholis, I. Searching for the high-energy neutrino counterpart signals: The case of the Fermi bubbles signal and of dark matter annihilation in the inner Galaxy. Phys. Rev. D 2013, 88, 063524. [Google Scholar] [CrossRef]
- Lee, F.F.; Lin, G.L.; Tsai, Y.L. Sensitivities of the Ice Cube Deep Core detector to signatures of low-mass dark matter in the Galactic halo. Phys. Rev. D 2013, 87, 025003. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J. Direct detection of self-interacting dark matter. Mon. Not. R. Astron. Soc. 2013, 430, 1722–1735. [Google Scholar] [CrossRef]
- Cirelli, M. Dark Matter Indirect searches: phenomenological and theoretical aspects. J. Phys.: Conf. Ser. 2013, 447, 012006. [Google Scholar] [CrossRef]
- Hektor, A.; Raidal, M.; Strumia, A.; Tempole, E. The cosmic-ray positron excess from a local Dark Matter over-density. Phys. Lett. B 2014, 728, 58–62. [Google Scholar] [CrossRef]
- Lawson, K.; Zhitnitsky, A.R. The 21 cm absorption line and the axion quark nugget dark matter model. Phys. Dark Univ. 2019, 24, 100295. [Google Scholar] [CrossRef]
- Tan, H.B.T.; Flambaum, V.V.; Samsonov, I.B.; Stadnik, Y.V.; Budkerb, D. Interference-assisted resonant detection of axions. Phys. Dark Univ. 2019, 24, 100272. [Google Scholar] [CrossRef]
- Goryachev, M.; McAllister, B.T.; Tobar, M.E. Axion detection with precision frequency metrology. Phys. Dark Univ. 2019, 26, 100345. [Google Scholar] [CrossRef]
- Dubbers, D.; Schmidt, M.G. The neutron and its role in cosmology and particle physics. Rev. Mod. Phys. 2011, 83, 1111. [Google Scholar] [CrossRef]
- Jenke, T. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 2014, 112, 151105. [Google Scholar] [CrossRef]
- Abel. Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields. Phys. Rev. X 2017, 7, 041034. [Google Scholar] [CrossRef]
- Yang, L.L.; Liu, H.R.; Li, W.C.; Huang, T.; Su, X.D.; Liu, R.Q.; Zhou, Z.B.; Li, Q. Detecting interactions mediated by axions with a milligram-scale torsion pendulum. Phys. Rev. D 2025, 111, 073010. [Google Scholar] [CrossRef]
- Shi, K.; Luo, P.; Liu, J.; Yin, H.; Zhou, Z. Dependence of the electrostatic patch force evaluation on the lateral resolution of Kelvin probe force microscopy. Phys. Rev. D 2024, 110, 122007. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Luo, R.; Liu, J.; Luo, P. Improved Limits on the Spin- and Velocity-Dependent Exotic Interaction in the Micrometer Range. Phys. Rev. Lett. 2025, 134, 251601. [Google Scholar] [CrossRef]
- Linden, T.; Nguyen, T.T.Q.; Tait, T.M.P. X-ray constraints on dark photon tridents. Phys. Rev. D 2025, 112, 023026. [Google Scholar] [CrossRef]
- Shen, G.F.; Bo, Z.H.; Chen, W.; Chen, X.; Chen, Y.H.; Cheng, Z.K.; Cui, X.Y.; Fan, Y.J.; Fang, D.Q.; Gao, Z.X. Group Author PandaX Collaboration (PandaX Collaboration) Search for Solar Boosted Dark Matter Particles at the PandaX-4T Experiment. Phys. Rev. Lett. 2025, 134, 161003. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E.; Aalbers, J.; Abe, K.; Maouloud, S.A.; Althueser, L.; Andrieu, B.; Angelino, E.; Martin, D.A.; Arneodo, F.; Baudis, F. Group Author, XENON Collaboration (XENON Collaboration) First Search for Light Dark Matter in the Neutrino Fog with XENONnT. Phys. Rev. Lett. 2025, 134, 111802. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, S.; Zhang, X. Prospects for probing dark matter particles and primordial black holes with the Hongmeng mission using the 21 cm global spectrum at cosmic dawn. Journal of Cosmology and Astroparticle Physics 2025, 7, 039. [Google Scholar] [CrossRef]
- Mayet, F.; et al. A review of the discovery reach of directional Dark Matter detection. Phys. Rep. 2016, 627, 1–49. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Dimopoulos, S.; Tilburg, K. Resonant absorption of bosonic dark matter in molecules. Phys. Rev. X 2018, 8, 041001. [Google Scholar] [CrossRef]
- Barducci, D.; Buttazzo, D.; Dondarini, A.; Franceschini, R.; Marino, G.; Mescia, F.; Panci, P. Scalar Rayleigh Dark Matter: current bounds and future prospects. Journal of High Energy Physics 2025, 6, 171. [Google Scholar] [CrossRef]
- Saha, A.K. Searching for dark matter with MeVCube. Phys. Rev. D 2025, 111, 123041. [Google Scholar] [CrossRef]
- Strigari, L.E. Galactic searches for dark matter. Phys. Rep. 2013, 531, 1–88. [Google Scholar] [CrossRef]
- Devlin, J.A. Dark matter: what is it, and can quantum sensors help find it? Contemporary Physics 2025, 90. 65, 239–258. [Google Scholar] [CrossRef]
- Wang, H.Y. New results by low momentum approximation from relativistic quantum mechanics equations and suggestion of experiments. J. Phys. Commun. 2024, 4, 125004. [Google Scholar] [CrossRef]
- Wang, H.Y. Solving Klein’s paradox. J. Phys. Commun. 2024, 4, 125010. [Google Scholar] [CrossRef]
- Wang, H.Y. Macromechanics and two-body problems. J. Phys. Commun. 2021, 5, 055018. [Google Scholar] [CrossRef]
- Wang, H.Y. The behaviors of the wave functions of small molecules with negative kinetic energies. Physics Essays 2023, 36, 140–148. [Google Scholar] [CrossRef]
- Wang, H.Y. Many-Body Theories of Negative Kinetic Energy Systems. Physics Essays 2023, 36, 198–211. [Google Scholar] [CrossRef]
- Wang, H.Y. A physical mechanism of the generation of stable positive kinetic energy systems and a qualitative explanation of the proportions of the four ingredients in the universe. Physics Essays 2023, 36, 385–398. [Google Scholar] [CrossRef]
- Schrödinger, E.; Schrödinger, E.; Quantisierung als Eigenwertproblem. Annalen der Physik 1926, 386(18), 109139. https://doi.org/10.1002/andp.19263861802; Schrödinger, E. Quantisation as a Problem of Proper Values (Part IV) in Collected Papers on Wave Mechanics. Blackie & son Limited: London and Glasow, 1926; Volume 386, p. 109−139 pp.102−123. [Google Scholar] [CrossRef]
- Wang, H.Y. A theory of dark energy that matches dark matter. Physics Essays 2023, 36, 149–159. [Google Scholar] [CrossRef]
- Pourciau, B. The Principia’s second law (as Newton understood it) from Galileo to Laplace. Archive for History of Exact Sciences 2020, 74, 183–242. [Google Scholar] [CrossRef]
- Seligman, D.Z.; et al. Discovery and Preliminary Characterization of a Third Interstellar Object:3I/ATLAS. The Astrophysical Journal Letters 2025, 989, L36. [Google Scholar] [CrossRef]
- Marcos, R.F.; et al. Assessing interstellar comet 3I/ATLAS with the 10.4 m Gran Telescopio Canarias and the Two-meter Twin Telescope. A&A (Astronomy & Astrophysics 2025, 700, L9. [Google Scholar] [CrossRef]
- Johns, O.D. Analytical Mechanics for Relativity and Quantum Mechanics, 2nd ed; Oxford University Press: New York, 2011. [Google Scholar]
- Markevitch, M.; Gonzalez, A.H.; David, L.; Vikhlinin, A.; Murray, S.; Forman, W.; Jones, C.; Tucker, W. A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E0657-56. The Astrophysical Journal 2002, 567, L27–L31. [Google Scholar] [CrossRef]
- Markevitch, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct Constraints on the Dark Matter Self-interaction Cross Section from the Merging Galaxy Cluster 1E0657-56. The Astrophysical Journal 2004, 606, 819–824. Available online: https://iopscience.iop.org/article/10.1086/383178/pdf. [CrossRef]
- Clowe, D.; Gonzalez, A.; Markevitch, M. Weak-lensing Mass Reconstruction of the Interacting Cluster 1E0657-558: Direct Evidence for the Existence of Dark Matter. The Astrophysical Journal 2004, 604, 596–603. Available online: https://iopscience.iop.org/article/10.1086/381970/pdf. [CrossRef]
- Clowe, D.; Bradacˇ, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A Direct Empirical Proof of the Existence of Dark Matter. The Astrophysical Journal 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Clowe, D.; Randall, S.W.; Markevitch, M. Catching a bullet: direct evidence for the existence of dark matter. Nuclear Physics B (Proc. Suppl.) 2007, 173, 28–31. [Google Scholar] [CrossRef]
- Markevitch, M.; Vikhlinin, A. Shock and cold fronts in galaxy cluster. Phys. Rep. 2007, 443, 1–53. [Google Scholar] [CrossRef]
- Farrar, G.R.; Rosen, R.A. A New Force in the Dark Sector? Phys. Rev. Lett. 2007, 98, 171302. [Google Scholar] [CrossRef]
- Springel, V.; Farrar, G.R. The speed of the ‘bullet’ in the merging galaxy cluster 1E0657−56. Monthly Notices of the Royal Astronomical Society (MNRAS) 2007, 380, 911–725. [Google Scholar] [CrossRef]
- Milgrom, M. Ultra-diffuse cluster galaxies as key to the MOND cluster conundrum. Monthly Notices of the Royal Astronomical Society (MNRAS) 2015, 454, 3810–3815. [Google Scholar] [CrossRef]
- Milgrom, M. Milgrom’s perspective on the Bullet Cluster”, The MOND Pages, archived from the original on July 21, 2016. 27 December 2016. Available online: https://www.archive.org/web/20160721044735/http://www.astro.umd.edu/~ssm/mond/moti_bullet.html.
- Vikhlinin, A.A.; Kravtsov, A.V.; Markevich, M.L.; Sunyaev, R.A.; Churazov, E.M. Clusters of galaxies Physics. Uspekhi 2014, 57, 317–341. Available online: https://ufn.ru/ufn14_4/ufn144b.pdf. [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The classical theory of fields. In Course of Theoretical Physics, Fourth English edition; Pergamon Press: New York, 1975; Vol. 2. [Google Scholar]
| Matter | Laws of Motion | PKE System | NKE system | ||
|---|---|---|---|---|---|
| Macroscopic objects | Classical mechanics | Nonrelativistic motion | Newtonian mechanics | NKE Newtonian mechanics* | |
| Relativistic motion | Relativistic mechanics | NKE relativistic motion* | |||
| Microscopic objects | Quantum mechanics | Nonrelativistic motion | Schrodinger equation | NKE Schrodinger equation | |
| relativistic motion | Spin-0 particle | PKE decoupled Klein-Gordon equation | NKE decoupled Klein-Gordon equation | ||
| Spin-1/2 particle | Dirac equation | ||||
| PKE particle | NKE particle | |
|---|---|---|
| Newton’s first law | If there is no external force, an object remains in uniform straight-line motion. | |
| Newton’s second law | ||
| Newton’s second law when mass is constant | Force is the cause of acceleration | Force is the cause of deceleration (negative acceleration) |
| Newton’s third law | The action force and reaction force between two objects are equal in magnitude, opposite in direction, and act on the same straight line. | |
| Momentum-velocity relationship | ||
| Expression of inertial force | ||
| Kinetic energy expression | ||
| Differential form of work-energy theorem | ||
| Integral form of work-energy theorem | ||
| Definition of angular momentum | ||
| Angular momentum theorem (L is torque) | ||
| Conservation of momentum when no external force | ||
| Conservation of angular momentum when no external force torque | ||
| Conservation of kinetic energy when no external force | ||
| 1.5 | −6 | 3 | −6 | −7 | 4 | −3.5 | 4 |
| 3 | −3 | 6 | −3 | −2 | 5 | −1 | 5 |
| 3 | −6 | 6 | −6 | −6 | 6 | −3 | 6 |
| 1.5 | −6 | 3 | 6 | 33 | −24 | 16.5 | 24 |
| 3 | −3 | 6 | 3 | 30 | −21 | 15 | 21 |
| 3 | −6 | 6 | 6 | 42 | −30 | 21 | 30 |
| Case | 2K1 of m1 | 2K2 of m2 | Distance r between the two objects | Total kinetic energy 2K | Relationship between U and K | |
|---|---|---|---|---|---|---|
| I | Attractive force | (Virial theorem) | ||||
| IV | Attractive force | |||||
| m1<m2 | ||||||
| III | Repulsive force | |||||
| m1>m2 | ||||||
| II | Repulsive force | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
