Submitted:
04 December 2025
Posted:
05 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
2.1. Raw Materials
2.2. Hydrothermal and Oleothermal Modification of Dabema
2.3. Colorimetric and Physical Properties of Modified Wood
2.4. Morphology of Wood Before and After Modification
2.5. Mechanical Properties of the Modified Wood
2.6. Multivariate Analysis (PCA, HCA) and RSM Optimization of Dabema Wood Treatments (Piptadeniastrum africanum)
2.6.1. Principal Component Analysis (PCA)
2.6.2. Hierarchical Cluster Analysis (HCA)
2.6.3. Statistical Analysis and RSM
2.7. TG/DTG Thermogravimetric Analyses
3. Results and Discussion
3.1. Colorimetric and Physical Properties of Modified Wood
3.2. Morphology of Wood Before and After Modification
3.3. Mechanical Properties of the Modified Wood
3.3.1. Multivariate Analysis (PCA, HCA) and RSM Optimization of Dabema Wood Treatments (Piptadeniastrum africanum)
3.3.2. Mechanical Behavior Modeling
3.3.3. Mechanostructural Effects of Hydrothermal and Oleothermal Treatment on Mechanical Performance
3.4. TG/DTG Thermogravimetric Analyses
4. Conclusion
Author Contributions
Declaration of Interest Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nwoanjia, J.; Biwôlé, J.J.; Mfomo, J.Z.; Fongnzossie, E.F.; Pizzi, A.; Essiane, S.N.; Biwole, A.B. Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (Piptadeniastrum africanum) in Cameroon. J. Renew. Mater. 2025, 13, 1123-1144. [CrossRef]
- Tomasi, I.T.; Santos, S.C.; Boaventura, R.A.; Botelho, C.M. Microwave-Assisted Extraction of Polyphenols from Eucalyptus Bark—A First Step for a Green Production of Tannin-Based Coagulants. Water 2023, 15, 317. [CrossRef]
- Biwôlé, J.J.; Biwôlé, A.B.; Tefack, P.M.; Ncharye, E.N.; Fedoung, E.F.; Bessike, J.G.; Nwoanjia, J.; Mewoli, A.E.; Pizzi, A.; Essiane, S.N.; et al. Eyong Wood (Eribroma oblonga), a Good Candidate for Hydrothermal Treatment: Optimization of Its Physical and Colorometric Properties under the Determinant pH Effect. Bioresour. Technol. Rep. 2025, 102148. [CrossRef]
- Hsieh, M.C.; Hung, K.C.; Xu, J.W.; Chang, W.S.; Wu, J.H. Characterization and Prediction of Physical Properties of Luanta Fir Wood with Vacuum Hydrothermal Treatment. *Polymers 2022, 14, 4374. [CrossRef]
- Gao, Y.; Li, Z.; Zhao, L.; Lyu, J. Effect of Heat Treatment on Hygroscopicity of Chinese Fir (*Cunninghamia lanceolata [Lamb.] Hook.) Wood. Forests 2024, 15, 630. [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [CrossRef]
- Thybring, E.E.; Fredriksson, M.; Zelinka, S.L.; Glass, S.V. Water in Wood: A Review of Current Understanding and Knowledge Gaps. Forests 2022, 13, 2051. [CrossRef]
- Mandraveli, E.; Mitani, A.; Terzopoulou, P.; Koutsianitis, D. Oil Heat Treatment of Wood—A Comprehensive Analysis of Physical, Chemical, and Mechanical Modifications. Materials 2024, 17, 2394. [CrossRef]
- Biyo’o, R.; Biwole, A.B.; Moutou Pitti, R.; Nyobe, C.J.; Ndiwe, B.; Onana, E.J.; Yamb, E. Mode I Cracking of Three Tropical Species from Cameroon: The Case of Bilinga, Dabema, and Padouk Wood. Wood Mater. Sci. Eng. 2024, 19, 1234-1243. [CrossRef]
- Ali, M.R.; Abdullah, U.H.; Ashaari, Z.; Hamid, N.H.; Hua, L.S. Hydrothermal Modification of Wood: A Review. Polymers 2021, 13, 2612. [CrossRef]
- Nurazzi, N.; Asyraf, M.R.; Rayung, M.; Norrrahim, M.N.; Shazleen, S.S.; Rani, M.S.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [CrossRef]
- Adewopo, J.B.; Patterson, D.W. Effects of Heat Treatment on the Mechanical Properties of Loblolly Pine, Sweetgum, and Red Oak. For. Prod. J. 2011, 61, 526-535. [CrossRef]
- Hao, X.; Wang, Q.; Wang, Y.; Han, X.; Yuan, C.; Cao, Y.; Lou, Z.; Li, Y. The Effect of Oil Heat Treatment on Biological, Mechanical and Physical Properties of Bamboo. J. Wood Sci. 2021, 67, 26. [CrossRef]
- Suri, I.F.; Kim, J.H.; Purusatama, B.D.; Yang, G.U.; Prasetia, D.; Lee, S.H.; Hidayat, W.; Febrianto, F.; Park, B.H.; Kim, N.H. Comparison of the Color and Weight Change in Paulownia tomentosa and Pinus koraiensis Wood Heat-Treated in Hot Oil and Hot Air. BioResources 2021, 16, 5574-5585. [CrossRef]
- Haseli, M.; Efhamisisi, D.; Abdulkhani, A.; Oladi, R.; Ungerer, B.; Al-musawi, H.; Halmschlager, E.; Müller, U. Effects of Oil Heat Treatment on Poplar Wood Properties: A Pilot Scale Study. Constr. Build. Mater. 2024, 430, 136353. [CrossRef]
- Piao, X.; Zhao, Z.; Guo, H.; Wang, Z.; Jin, C. Improved Properties of Bamboo by Thermal Treatment with Wood Wax Oil. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128807. [CrossRef]
- Zhang B, Petrissans M, Petrissans A, Pizzi A, Colin B. Furanic Polymerization Causes the Change, Conservation and Recovery of Thermally-Treated Wood Hydrophobicity before and after Moist Conditions Exposure. Polymers. 2023 Dec 31;15(1):221. [CrossRef]
- Bessala, L.F.; Gao, J.; He, Z.; Wang, Z.; Yi, S. Effects of Heat Treatment on Color, Dimensional Stability, Hygroscopicity and Chemical Structure of Afrormosia and Newtonia Wood: A Comparative Study of Air and Palm Oil Medium. Polymers 2023, 15, 774. [CrossRef]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E. Strength Properties of Thermally Modified Softwoods and Its Relation to Polymeric Structural Wood Constituents. Ann. For. Sci. 2007, 64, 679–690. [CrossRef]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterization of thermally modified wood: Molecular reasons for wood performance improvement. Holz Roh Werkst. 1998, 56, 149–153.
- Broda, M.; Popescu, C.-M.; Poszwa, K.; Mazela, B.; Maciejewski, H. How Thermal Treatment Affects the Chemical Composition and the Physical, Mechanical and Swelling Properties of Scots Pine Juvenile and Mature Wood. Wood Sci. Technol. 2024, 58, 1153–1180. [CrossRef]
- Perçin, O.; Yeşil, H.; Uzun, O.; Bülbül, R. Physical, Mechanical, and Thermal Properties of Heat-Treated Poplar and Beech Wood. BioResources 2024, 19, 7339-7353. [CrossRef]
- Zelinka, S.L.; Altgen, M.; Emmerich, L.; Guigo, N.; Keplinger, T.; Kymäläinen, M.; Thybring, E.E.; Thygesen, L.G. Review of Wood Modification and Wood Functionalization Technologies. Forests 2022, 13, 1004. [CrossRef]
- Christoforo, A.L. Wood Quality and Mechanical Properties. Forests 2024, 15, 1874. [CrossRef]
- Zhang, C.; Chao, L.; Zhang, Z.; Zhang, L.; Li, Q.; Fan, H.; Zhang, S.; Liu, Q.; Qiao, Y.; Tian, Y.; et al. Pyrolysis of Cellulose: Evolution of Functionalities and Structure of Bio-Char versus Temperature. Renew. Sustain. Energy Rev. 2021, 135, 110416. [CrossRef]
- El-Sayed, S.A.; Khass, T.M.; Mostafa, M.E. Thermal Degradation Behaviour and Chemical Kinetic Characteristics of Biomass Pyrolysis Using TG/DTG/DTA Techniques. *Biomass Conv. Bioref. 2024, 14, 17779–17803. [CrossRef]
- Nganko, J.M.; Koffi, E.P.M.; Kane, M.; Gbaha, P.; Yao, K.B. Application of Principal Component Analysis (PCA) to Assess the Influence of Thermochemical Treatment of Tropical Wood Sawdust on the Calorific, Mechanical, Physicochemical, and Combustion Properties of Fuel Briquettes. Biofuels 2024, 15, 1281–1294. [CrossRef]
- Nadjet, Z.; Abdelmonem, M.; Badra, A.; Lakhder, S.; Issam, Z.; Abderrahmane, K.; Nabil, M.; Salim, K.; Boualem, R. Multivariate Analysis of Groundwater Quality Using PCA and HAC: Geochemical Controls on Mineralization, Nitrification, and Pollutant Dynamics in the Southeastern Arid Region of Algeria. Desalin. Water Treat. 2025, 324, 101463. [CrossRef]
- Cirad. The Main Technological Characteristics of 245 Tropical Wood Species. 2017. Available online: https://tropix.cirad.fr/fiches-disponibles (accessed on 27 September 2013).
- HunterLab. Insight in Color. CIE L*, a*, b* Color Space. HunterLab Applications Note 1986, 8, 7.
- Hrčková, M.; Koleda, P.; Barcík, Š.; Štefková, J. Color Change of Selected Wood Species Affected by Thermal Treatment and Sanding. BioResources 2018, 13, 8956-8975. [CrossRef]
- Aït-Sahalia, Y.; Xiu, D. Principal Component Analysis of High-Frequency Data. *J. Am. Stat. Assoc. 2019, 114, 287–303. [CrossRef]
- Huang, D.; Shen, H.; Zhang, J.; Zhuo, X.; Dong, L. Effects of Hydrothermal–Microwave Treatment on Three-Point Bending Properties of Teak in Plantation. Front. Mater. 2024, 11, 1278707. [CrossRef]
- Arriaga, F.; Wang, X.; Íñiguez-González, G.; Llana, D.F.; Esteban, M.; Niemz, P. Mechanical Properties of Wood: A Review. Forests 2023, 14, 1202. [CrossRef]
- Nakagawa, T.; Poulin, E.; Rueppel, T.; Chen, Z.; Swinea, J.; O’Brien, M.; Houser, G.; Wood, G.; Weinheimer, M.; Bahmani, P.; et al. Effects of Thermal Modification on the Flexure Properties, Fracture Energy, and Hardness of Western Hemlock. *Wood Sci. Technol. 2024, 58, 109–133. [CrossRef]
- Tufan, M.Z.; Üner, B. Analysis of Heat-Treated Taurus Cedar (Cedrus libani) Wood Surface Properties with Fourier Transform Infrared (FTIR) Spectroscopy and Contact Angle Measurement. Drvna Ind. 2025, 76, 299-315. [CrossRef]
- Zhu, J.; Peng, H.; Lu, X.; Lyu, J.; Zhan, T. Classification of Principal Wood Species in China Based on the Physiomechanical Properties. J. Renew. Mater. 2023, 11, 1367-1382. [CrossRef]
- Ndiapi, O.; Njankouo, J.M.; Ohandja, L.M.A.; Gerard, J. Characterisation and Statistical Modelling of Shear Strength in 12 Hardwood Timber Species from the Congo Basin. *Bois For. Trop. 2024, 360, 27-40. [CrossRef]
- Fawzy, S.; Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.A.; Harrison, J.; Al-Fatesh, A.S.; Fakeeha, A.H.; Rooney, D.W. Kinetic Modelling for Pyrolytic Conversion of Dedicated Short Rotation Woody Crop with Predictions for Isothermal, Non-Isothermal and Stepwise Heating Regimes. Appl. Energy Combust. Sci. 2022, 9, 100048. [CrossRef]
- Mehrabi, P.; Dackermann, U.; Siddique, R.; Rashidi, M. A Review on the Effect of Synthetic Fibres, Including Macro Fibres, on the Thermal Behaviour of Fibre-Reinforced Concrete. Buildings 2024, 14, 4006. [CrossRef]
- Tomak, E.D. Surface Wettability of Boron and Oil-Treated Wood. Cerne 2022, 28, e103058. [CrossRef]
- Liang, Z.; Jiang, H.; Tan, Y. A Review of Thermal Treatment for Bamboo and Its Composites. Green Process. Synth. 2024, 13, 20230263. [CrossRef]
- Salca, E.-A.; Kobori, H.; Inagaki, T.; Kojima, Y.; Suzuki, S. Effect of Heat Treatment on Colour Changes of Black Alder and Beech Veneers. J. Wood Sci. 2016, 62, 297–304. [CrossRef]
















| Code_Ech |
Density Kg.m-3 |
EMC_%± SD | VSH_% ±SD |
VSW_% ±SD |
WA_% ±SD |
L* | a* | b* | ∆E* | C* | h* (°) |
| Ref | 963 ± 78 | 13.16 ± 0.43 | 15.80 ± 0.60 | 20.50 ± 0.75 | 78.0 ± 5.0 | 62.14 ±1.24 | 4.96 ±0.15 | 11.94 ±0.36 | - | 12.929 ±0.39 | 22.56 ±0.34 |
| Hyd100°2h | 928 ± 47 | 11.50 ± 0.32 | 14.20 ± 0.55 | 18.20 ± 0.70 | 64.0 ± 4.5 | 34.30 ±0.69 | -0.16 ±0.00 | 1.98 ±0.06 | 30 | 1.986 ±0.06 | -4.62 ±0.07 |
| Hyd100°3.5h | 942 ± 98 | 10.80 ± 0.30 | 13.50 ± 0.52 | 17.30 ± 0.68 | 59.0 ± 4.5 | 32.56 ±0.65 | -0.62 ±0.02 | 1.08 ±0.03 | 32 | 1.245 ±0.04 | -29.86 ±0.45 |
| Hyd100°5h | 938 ± 85 | 10.00 ± 0.28 | 12.80 ± 0.50 | 16.50 ± 0.65 | 54.0 ± 4.0 | 32.58 ±0.65 | -0.42 ±0.01 | 1.72 ±0.05 | 31.73 | 1.771 ±0.05 | -13.72 ±0.21 |
| Hyd160°2H | 933 ± 96 | 9.00 ± 0.26 | 11.20 ± 0.48 | 14.50 ± 0.60 | 48.0 ± 4.0 | 33.20 ±0.66 | -0.84 ±0.03 | 1.32 ±0.04 | 31.38 | 1.565 ±0.05 | -32.47 ±0.49 |
| Hyd160°3.5h | 946 ± 86 | 8.20 ± 0.27 | 10.50 ± 0.45 | 13.40 ± 0.55 | 43.0 ± 3.5 | 33.84 ±0.68 | -0.18 ±0.01 | 3.42 ±0.10 | 29.99 | 3.425 ±0.10 | -3.01 ±0.05 |
| Hyd160°5H | 959 ± 89 | 7.50 ± 0.25 | 9.80 ± 0.42 | 12.50 ± 0.50 | 39.0 ± 3.5 | 32.52 ±0.65 | -0.32 ±0.01 | 2.70 ±0.08 | 31.48 | 2.719 ±0.08 | -6.76 ±0.10 |
| Hyd220°2h | 1040 ± 93 | 7.00 ± 0.30 | 8.00 ± 0.40 | 10.50 ± 0.48 | 33.0 ± 3.0 | 39.40 ±0.79 | 2.02 ±0.06 | 7.36 ±0.22 | 23.38 | 7.632 ±0.23 | 15.35 ±0.23 |
| Hyd220°3.5h | 957 ± 49 | 6.00 ± 0.28 | 6.50 ± 0.35 | 8.20 ± 0.40 | 29.0 ± 2.8 | 31.28 ±0.63 | -0.40 ±0.01 | 2.38 ±0.07 | 32.75 | 2.413 ±0.07 | -9.54 ±0.14 |
| Hyd220°5h | 981 ± 97 | 5.20 ± 0.26 | 5.20 ± 0.30 | 6.70 ± 0.35 | 25.0 ± 2.5 | 33.10 ±0.66 | 1.12 ±0.03 | 3.94 ±0.12 | 30.37 | 4.096 ±0.12 | 15.87 ±0.24 |
| Oleo100°2h | 970 ± 69 | 8.34 ± 0.22 | 10.50 ± 0.42 | 13.20 ± 0.55 | 44.0 ± 3.5 | 50.36 ±1.01 | 12.08 ±0.36 | 19.40 ±0.58 | 15.65 | 22.854 ±0.69 | 31.91 ±0.48 |
| Oleo100°3.5h | 940 ± 27 | 7.60 ± 0.22 | 9.80 ± 0.40 | 12.20 ± 0.50 | 40.0 ± 3.2 | 45.26 ±0.91 | 10.54 ±0.32 | 16.00 ±0.48 | 18.24 | 19.160 ±0.57 | 33.37 ±0.50 |
| Oleo100°5h | 990 ± 19 | 7.00 ± 0.20 | 9.20 ± 0.38 | 11.50 ± 0.48 | 37.0 ± 3.0 | 42.30 ±0.85 | 8.38 ±0.25 | 12.38 ±0.37 | 20.14 | 14.950 ±0.45 | 34.09 ±0.51 |
| Oleo160°2h | 960 ± 68 | 7.80 ± 0.25 | 8.00 ± 0.36 | 10.20 ± 0.45 | 34.0 ± 3.0 | 42.10 ±0.84 | 8.04 ±0.24 | 11.92 ±0.36 | 20.27 | 14.378 ±0.43 | 34.00 ±0.51 |
| Oleo160°3.5h | 960 ± 46 | 7.00 ± 0.24 | 7.20 ± 0.33 | 9.30 ± 0.42 | 30.0 ± 2.8 | 40.14 ±0.80 | 6.00 ±0.18 | 7.00 ±0.21 | 22.57 | 9.220 ±0.28 | 40.60 ±0.61 |
| Oleo160°5h | 1070 ± 83 | 6.20 ± 0.22 | 6.50 ± 0.30 | 8.20 ± 0.38 | 27.0 ± 2.6 | 38.86 ±0.78 | 7.36 ±0.22 | 10.40 ±0.31 | 23.45 | 12.741 ±0.38 | 35.29 ±0.53 |
| Oleo220°2h | 1020 ± 96 | 6.00 ± 0.28 | 5.50 ± 0.28 | 7.00 ± 0.35 | 23.0 ± 2.4 | 46.66 ±0.93 | 11.30 ±0.34 | 17.78 ±0.53 | 17.71 | 21.067 ±0.63 | 32.44 ±0.49 |
| Oleo220°3.5h | 990 ± 59 | 5.30 ± 0.26 | 4.80 ± 0.26 | 6.20 ± 0.32 | 20.0 ± 2.2 | 37.02 ±0.74 | 8.62 ±0.26 | 7.58 ±0.23 | 25.76 | 11.479 ±0.34 | 48.67 ±0.73 |
| Oleo220°5h | 1070 ± 96 | 4.80 ± 0.24 | 4.20 ± 0.24 | 5.40 ± 0.30 | 17.0 ± 2.0 | 33.44 ±0.67 | 4.30 ±0.13 | 2.56 ±0.08 | 30.20 | 5.004 ±0.15 | 59.23 ±0.89 |
| Cluster | PCA mechanical features | Experimental codes |
Mechanical Response |
Potential applications | Loading mode(s) |
| C1 | Very low mechanical values (σ, MOR, MOE -40 à -70%); fragile; high deformation | Ref; Hyd220°2h; Hyd220°3.5h; Hyd220°5h; Hyd160°5h | Severe thermal degradation (≥160-220°C) → hemicellulose loss, cell collapse, early failure | Non-structural uses: lightweight panels, decorative coverings | Compression, Three-point bending, Tensile |
| C2 | Low strength and stiffness (MOR/MOE -40 à -60%); extreme deformation | Hyd100°2h; Hyd100°3.5h; Hyd100°5h; Hyd160°2h; Hyd160°3.5h; Oleo100°5h; Oleo160°5h; Oleo220°3.5h; Oleo220°5h | High plasticization; reduced stiffness; fibers unable to carry maximum loads | Light structures; low-stress components; shock-absorbing parts | Compression, Three-point bending, Tensile |
| C3 | Intermediate performance (MOR/MOE -10 à -25%); moderate ductility | Oleo100°2h; Oleo100°3.5h; Oleo160°2h; Oleo160°3.5h; Oleo220°2h; Hyd100°5h; Hyd100°3.5h | Moderate treatments → limited mechanical reduction; good ductility | Furniture; semi-structural panels; moderate bending components | Compression, Bending, Tensile |
| C4 | High performance (MOE loss <10-20%); σ stable or maximal; cellular consolidation | Hyd100°2h; Hyd160°3.5h; Hyd220°2h; Hyd220°5h; Oleo100°3.5h; Oleo160°2h; Oleo160°3.5h; Oleo220°2h | Consolidated microstructure; lignin–cellulose crosslinking | Frameworks; beams; structural elements; rigid components | Compression, Three-point bending, Tensile |
| C5 | Very high MOE (10-20% above control); maximum stiffness | Oleo100°5h; Oleo160°5h; Oleo220°3.5h; Oleo220°5h | Strong lignin–cellulose crosslinking; hygroscopic stabilization | Highly stressed bending applications; rigid technical components | Compression, Three-point bending, Tensile |
| Loading mode(s) | Variable | Min | Max | Mean | ±SD |
Mechanical Response |
Associated PCA cluster(s) |
| Compression | Elong_mm | 1.948 | 4.958 | 3.032 | 0.974 | Moderate deformation; ductile behaviour under thermal damage | C1-C2 (high ε), C3 (moderate) |
| ε_mm | 0.032 | 0.083 | 0.051 | 0.016 | Ductility sensitive to microstructural collapse | C1-C2 (extreme deformation) | |
| σ_MPa | 2110.94 | 2681.24 | 2291.6 | 129.7 | Stress capacity significantly reduced | C1-C2 (-40-70%), C3 (moderate loss) | |
| MOE_MPa | 26092.67 | 70836.53 | 49461.36 | 13540.12 | Heterogeneous stiffness depending on treatment | C3 (-10-25%), C4 (<10-20%), C5 (10-20%) | |
| Three-point bending | Elong_mm | 1.264 | 2.776 | 2.095 | 0.418 | Bending deformation moderately sensitive | C2 (high), C3-C5 (stable) |
| ε_mm | 0.009 | 0.020 | 0.016 | 0.003 | Small bending strain; degradation amplifies ductility | C1-C2 | |
| σ_MPa | 53.7 | 83.5 | 67.6 | 10.0 | MOR markedly decreases | C1-C2, C3 (moderate), C4-C5 (high MOR) | |
| MOE_MPa | 3903.5 | 5751.6 | 4697.0 | 473.1 | Flexural stiffness relatively stable | C3, C4, C5 | |
| MOR_MPa | 56.9 | 88.9 | 74.9 | 10.3 | Rupture stress follows degradation pattern | C1-C2 < C3 < C4-C5 | |
| Tensile | Elong_mm | 1.561 | 4.667 | 2.451 | 0.700 | Tensile deformation highly sensitive to microstructural damage | C1-C2 |
| ε_mm | 0.076 | 0.244 | 0.124 | 0.036 | High tensile ductility under degraded microstructure | C1-C2 | |
| σ_MPa | 33.99 | 63.44 | 48.55 | 7.76 | Strongly reduced tensile resistance | C1-C2 | |
| MOE_MPa | 177.1 | 502.1 | 402.8 | 69.6 | Significant stiffness loss in tensile | C1-C2 | |
| MOR_MPa | 36.89 | 90.65 | 56.96 | 12.11 | High sensitivity to thermal and hydrothermal degradation | C1-C2 |
| Treatment | Test | Coefficient | β | Df | Ss | Ms | F-value | P-value | CI 95% |
| Hydrothermal | Compression | Intercept | 2043.52 | 1 | - | - | - | - | [1971.92;2115.13] |
| Hydrothermal | Compression | T-temp. | -38.53 | 1 | 8906.59 | 8906.59 | 1.67 | 0.2367 | [-108.93 ;31.88] |
| Hydrothermal | Compression | t-time | 71.55 | 1 | 30717.85 | 30717.85 | 5.78 | 4.72E-2 | [1.15;141.96] |
| Hydrothermal | Compression | T² | 199.32 | 1 | 1.097E5 | 1.097E5 | 20.63 | 6.4E-3 | [95.55;303.09] |
| Hydrothermal | Compression | t² | 117.67 | 1 | 38242.97 | 38242.97 | 7.19 | 2.7E-3 | [13.90;221.44] |
| Hydrothermal | Compression | Tt | -139.77 | 1 | 78145.41 | 78145.41 | 14.69 | 3.15E-2 | [-226.00 ; -53.55] |
| Hydrothermal | Compression | Model | - | 5 | 3.486E5 | 69718.92 | 13.11 | 1.9E-3 | - |
| Hydrothermal | Compression | Lack of fit | - | 3 | 34890.19 | 11630.06 | 19.87 | 7.3E-3 | - |
| Hydrothermal | Compression | Residuals | - | 3 | 37231.90 | 5318.84 | - | - | - |
| Oleothermal | Compression | Intercept | 2282.08 | 1 | - | - | - | - | [2261.32;2302] |
| Oleothermal | Compression | T-temp. | 34.01 | 1 | 6942.12 | 6942.12 | 15.52 | 5.6E-3 | [13.60;54.43] |
| Oleothermal | Compression | t-time | -1.1883 | 1 | 0.2128 | 0.2128 | 5E-4 | 0.9832 | [-20.60 ;20.23] |
| Oleothermal | Compression | T² | -83.30 | 1 | 19165.43 | 19165.43 | 42.85 | 3E-4 | [-113.39 ; -53.21] |
| Oleothermal | Compression | t² | 79.43 | 1 | 17424.37 | 17424.37 | 38.96 | 4E-4 | [49.34;109.52] |
| Oleothermal | Compression | Tt | 5.65 | 1 | 127.69 | 127.69 | 0.2855 | 0.6097 | [-19.35 ;30.65] |
| Oleothermal | Compression | Model | - | 5 | 33584.55 | 6716.91 | 15.02 | 1.3E-3 | - |
| Oleothermal | Compression | Lack of fit | - | 3 | 2463.94 | 821.31 | 4.93 | 0.0788 | - |
| Oleothermal | Compression | Residuals | - | 7 | 3130.74 | 447.25 | - | - | - |
| Treatment | Test | Coefficient | β | Df | Ss | Ms | F-value | P-value | CI 95% |
| Hydrothermal | Bending | Intercept | 80.81 | 1 | - | - | - | - | [77.51;84.11] |
| Hydrothermal | Bending | T-temp. | 2.07 | 1 | 25.67 | 25.67 | 2.27 | 0.1756 | [-1.18 ;5.31] |
| Hydrothermal | Bending | t-time | 3.83 | 1 | 88.01 | 88.01 | 7.79 | 2.69E-2 | [0.5842;7.08] |
| Hydrothermal | Bending | T² | -9.72 | 1 | 261.08 | 261.08 | 23.09 | 2E-3 | [-14.51 ; -4.94] |
| Hydrothermal | Bending | t² | -7.51 | 1 | 155.67 | 155.67 | 13.77 | 7.5E-3 | [-12.29 ; -2.72] |
| Hydrothermal | Bending | Tt | 4.21 | 1 | 70.98 | 70.98 | 6.28 | 4.07E-2 | [0.2372;8.19] |
| Hydrothermal | Bending | Model | - | 5 | 851.84 | 170.37 | 15.07 | 1.3E-3 | - |
| Hydrothermal | Bending | Lack of fit | - | 3 | 78.96 | 26.32 | 601.34 | <1E-4 | - |
| Hydrothermal | Bending | Residuals | - | 7 | 79.14 | 11.31 | - | - | - |
| Oleothermal | Bending | Intercept | 88.76 | 1 | - | - | - | - | [83.72;93.80] |
| Oleothermal | Bending | T-temp. | -6.97 | 1 | 291.62 | 291.62 | 11.09 | 1.26E-2 | [-11.92 ; -2.02] |
| Oleothermal | Bending | t-time | 2.70 | 1 | 43.85 | 43.85 | 1.67 | 0.2377 | [-2.25 ;7.65] |
| Oleothermal | Bending | T² | -13.61 | 1 | 511.50 | 511.50 | 19.45 | 3.1E-3 | [-20.91 ; -6.31] |
| Oleothermal | Bending | t² | -9.07 | 1 | 227.40 | 227.40 | 8.64 | 0.0217 | [-16.37 ; -1.78] |
| Oleothermal | Bending | Tt | -4.08 | 1 | 66.75 | 66.75 | 2.54 | 0.1552 | [-10.15 ;1.98] |
| Oleothermal | Bending | Model | - | 5 | 1570.52 | 314.10 | 11.94 | 2.6E-3 | - |
| Oleothermal | Bending | Lack of fit | - | 3 | 184.13 | 61.38 | 1.427E5 | <1E-4 | - |
| Oleothermal | Bending | Residuals | - | 7 | 184.13 | 26.30 | - | - | - |
| Treatment | Test | Coefficient | β | Df | Ss | Ms | F-value | P-value | CI 95% |
| Hydrothermal | Tensile | Intercept | 79.88 | 1 | - | - | - | - | [74.64;85.12] |
| Hydrothermal | Tensile | T-temp. | 3.44 | 1 | 70.86 | 70.86 | 2.48 | 0.1590 | [-1.72 ;8.59] |
| Hydrothermal | Tensile | t-time | -1.48 | 1 | 13.11 | 13.11 | 0.4597 | 0.5195 | [-6.63 ;3.68] |
| Hydrothermal | Tensile | T² | -25.98 | 1 | 1863.63 | 1863.63 | 65.34 | 1E-4 | [-33.58 ; -18.38] |
| Hydrothermal | Tensile | t² | -2.73 | 1 | 20.60 | 20.60 | 1.03 | 0.4235 | [-10.33 ;4.87] |
| Hydrothermal | Tensile | Tt | -2.71 | 1 | 29.32 | 29.32 | 14.69 | 0.3444 | [-9.02 ;3.61] |
| Hydrothermal | Tensile | Model | - | 5 | 2492.04 | 498.41 | 17.47 | <8E-4 | - |
| Hydrothermal | Tensile | Lack of fit | - | 3 | 199.58 | 66.53 | 3563.26 | <1E-4 | - |
| Hydrothermal | Tensile | Residuals | - | 7 | 199.65 | 28.52 | - | - | - |
| Oleothermal | Tensile | Intercept | 77.10 | 1 | - | - | - | - | [73.15;81.06] |
| Oleothermal | Tensile | T-temp. | 2.04 | 1 | 25.09 | 25.09 | 1.55 | 0.2535 | [-1.84 ;5.93] |
| Oleothermal | Tensile | t-time | -1.26 | 1 | 9.45 | 9.45 | 0.5831 | 0.4701 | [-5.14 ;2.63] |
| Oleothermal | Tensile | T² | -8.16 | 1 | 183.94 | 183.94 | 11.35 | 0.0119 | [-13.89 ; -2.43] |
| Oleothermal | Tensile | t² | -16.84 | 1 | 783.32 | 783.32 | 48.33 | 2E-4 | [-22.57 ; -11.11] |
| Oleothermal | Tensile | Tt | 0.8425 | 1 | 2.84 | 2.84 | 0.1752 | 0.6881 | [-3.92 ;5.60] |
| Oleothermal | Tensile | Model | - | 5 | 1507.15 | 301.43 | 18.60 | 6E-4 | - |
| Oleothermal | Tensile | Lack of fit | - | 3 | 106.56 | 35.52 | 20.62 | 6.8E-3 | - |
| Oleothermal | Tensile | Residuals | - | 7 | 113.46 | 16.21 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
