Preprint
Article

This version is not peer-reviewed.

Zero-Energy Bound State Trapped in Line-Shaped Vortex in Topological Superconductor

Submitted:

04 December 2025

Posted:

05 December 2025

You are already at the latest version

Abstract
Fermion bound states in the core of a line-shaped vortex of a two-dimensional topological superconductor are investigated. The superconducting pairing potential, described in terms of elliptical coordinates, vanishes along a line defect with the two foci at the endpoints. The superconductivity is induced into a topological insulator via proximity effect with a type II s-wave superconductor. The spin and the momentum are perpendicularly locked by the strong spin-orbit coupling via Rashba interaction. A zero-energy Majorana state arises from the Berry phase together with a sequence of equally spaced fermion excitations. By solving the Bogoliubov-de Gennes equations using the method employed by Caroli, de Gennes and Matricon we calculate the energies, the wavefunctions and spin-polarization of the bound states. An analytic expression for the local density of states within the vortex is obtained.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated