Against the backdrop of the global energy transition, the efficient exploitation of marine renewable energy has become a key pathway toward carbon neutrality. Wind–wave hybrid systems (WWHSs) have attracted increasing attention due to their resource complementarity, efficient spatial utilization, and shared infrastructure. However, most existing studies focus on single components or local optimization. A systematic integration of the full technology chain remains limited, hindering the transition from demonstration projects to commercial deployment. This review provides a comprehensive overview of the technological evolution and key characteristics of offshore wind turbine (OWT) foundations and wave energy converters (WECs). Fixed-bottom foundations remain the mainstream solution for near-shore development. Floating offshore wind turbines (FOWTs) represent the core direction for deep-sea deployment. Among WEC technologies, oscillating buoy (OB) WECs are the dominant research pathway. Yet high costs and poor performance under extreme sea states remain major barriers to commercialization. On this basis, the paper summarizes three major integration modes of WWHSs. Among them, hybrid configurations have become the research focus due to their structural sharing, hydrodynamic coupling, and significant cost and energy synergies. Furthermore, the review synthesizes optimization strategies for both technology design and spatial layout, aiming to enhance energy capture, structural stability, and overall economic performance. Finally, the paper critically identifies current research gaps and bottlenecks, and outlines key technological pathways required for future commercial viability. These include the development of high-performance adaptive power take-off (PTO) systems, deeper understanding of multi-physics coupling mechanisms, intelligent operation and maintenance enabled by digital twins, and comprehensive life-cycle techno-economic and environmental assessments. This review aims to provide a systematic reference for the advancement of multi-energy offshore systems and to support future integrated energy development in deep-sea environments.