Submitted:
03 December 2025
Posted:
05 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Neutron Diffraction
2.3. X-Ray Emission Spectroscopy (XES) and X-Ray Absorption Edge Spectrum (XAS)
2.4. AC Magnetic Susceptibility
3. Results
3.1. Crystalline Structure
3.2. Charge Transfer
3.3. Magnetic Transition
3.4. Spin Arrangement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kauzlarich, S.M.; Stanton, Jr J.L.; Farber, J.; Averill, B.A. Neutron profile refinement of the structure of FeOCl and FeOCl(TTF)1/8.5. J. Am. Chem. Soc. 1986, 108, 7946-7951.
- Sagua, A.; Morán, E.; Alario-Franco, M.A.; Rivera, A.; León, C.; Santamarìa, J.; Sanz, J. Lithium intercalation in FeOCl revisited. Int. J. Inorg. Mat. 2001, 3, 293-301.
- Zhang, J.; Liu, G.; Liu, S. 2D/2D FeOCl/graphite oxide heterojunction with enhanced catalytic performance as a photo-Fenton catalyst. New J. Chem. 2018, 42, 6896-6902.
- Zhang, T.; Wang, Y.; Li, H.; Zhong, F.; Shi, J.; Wu, M.; Sun, Z.; Shen, W.; Wei, B.; Hu, W.; Liu, X.; Huang, L.; Hu, C.; Wang, Z.; Jiang, C.; Yang, S.; Zhang, Q.-M.; Qu, Z. Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl. ACS Nano 2019, 13, 11353-11362.
- Bian, Y.; Nie, L.; Wang, A.; Zhang, L.; Yue, R.; Han, N.; Chen, Y. Facile synthesis of stoichiometric InOCl mesoporous material for high performance formaldehyde gas sensors. Sensors and Actuators B: Chemical 2020, 319, 128078.
- Ekholm, M.; Schönleber, A.; van Smaalen, S. The role of magnetic order in VOCl. J. Phys.: Condens. Matter 2019, 31, 325502.
- Zhang, J.; Liu, G.; Liu, S. 2D/2D FeOCl/graphite oxide heterojunction with enhanced catalytic performance as a photo-Fenton catalyst. New J. Chem. 2018, 42, 6896-6902.
- Ferrenti, A.M.; Klemenz, S.; Lei, S.; Song, X.; Ganter, P.; Lotsch, B.V.; Schoop, L.M. Change in Magnetic Properties upon Chemical Exfoliation of FeOCl. Inorg. Chem. 2020, 59(2), 1176-1182.
- Zheng, X.; Wei, Y.; Wei, Z.; Luo, W.; Guo, X.; Zhang, X.; Liu, J.; Chen, Y.; Peng, G.; Cai, W.; Qin, S.; Huang, H.; Deng, C.; Zhang, X. Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device. Nano Res. 2022, 15, 9377-9385.
- Maguire, J.A.; Banewicz, J.J. Direct intercalation of alkali metal ions in FeOCl. Mat. Res. Bull. 1984, 19, 1573-1580.
- Ferrenti, A.M.; Klemenz, S.; Lei, S.; Song, X.; Ganter, P.; Lotsch, B.V.; Schoop, L.M. Change in Magnetic Properties upon Chemical Exfoliation of FeOCl. Inorg. Chem. 2020, 59(2), 1176-1182.
- Zeng, Y.; Gu, P.; Zhao, Z.; Zhang, B.; Lin, Z.; Peng, Y.; Li, W.; Zhao, W.; Leng, Y.; Tan, P.; Yang, T.; Zhang, Z.; Song, Y.; Yang, J.; Ye, Y.; Tian, K.; Hou, Y. 2D FeOCl: A Highly In-Plane Anisotropic Antiferromagnetic Semiconductor Synthesized via Temperature-Oscillation Chemical Vapor Transport. Adv Mater. 2022, 34(14), e2108847.
- Schollhorn, R. Intercalation Reactions of Solids by Electron/Ion Transfer. Angew. Chem. 1980, 19, 983.
- Jarrige, I.; Cai, Y.Q.; Shieh, S.R.; Ishii, H.; Hiraoka, N.; Karna, S.; Li, W.-H. Charge transfer in FeOCl intercalation compounds and its pressure dependencies: An X-ray spectroscopic study, Phys. Rev. B 2010, 82, 165121.
- Palvadeau, P.; Coic, L.; Rouxel, J.; Portier, J. The lithium and molecular intercalates of FeOCl. Mat. Res. Bull. 1978, 13, 221-227.
- O’Hare, D. Inorganic Materials, edited by D. W. Bruce and D. O’Hare; John Wiley & Sons Ltd., Chichester; 1997, pp. 202-208.
- Wu, C.-G.; DeGroot, D.C.; Marcy, H.O.; Schindler, J.L.; Kannewurf, C.R.; Bakas, T.; Papaefthymiou, V.; Hirpo, W.; Yesinowski, J.P.; Liu, Y.-J.; Kanatzidis, M.G. Reaction of Aniline with FeOC1. Formation and Ordering of Conducting Polyaniline in a Crystalline Layered Host. J. Am. Chem. Soc. 1995, 117, 9229-9242.
- Takehara, Z.; Kanamura, K.; Imanishi, N.; Zhen, C. Synthetic Photochemistry. XLIX. Synthesis and Photoisomerization of 2-Acetyl-2-azatricyclo[6.2.2.01,5]dodeca-4,6,9,11-tetraen-3-one. An MO Explanation of the Cycloaddition of Cyclohepta[b]pyrrol-2(1H)-ones. Bull. Chem. Soc. Jpn. 1989, 62, 1567-1571.
- Halbert, T.R.; Scanlon, J. Organometallic intercalation compounds of FeOCl. Mater. Res. Bull. 1979, 14, 415-421.
- Takehara, Z.; Sakaebe, H.; Kanamura, K. Application of FeOOH derivatives for a secondary lithium battery. J. Power Sources 1993, 44, 627-634.
- Kanamura, K.; Takehara, Z.I.; Sakaebe, H.; Fujimoto, H. Application of FeOCl derivatives for a secondary lithium battery. III: Electrochemical reaction and physical state of reaction product of FeOCl with aniline in water. J. Electrochemical Society 1995, 142(7), 2126-2131.
- Adam, A.; Buisson, G. Structure magnétique cycloïdale de FeOCl. Phys. Status Solidi A 1975, 30, 323-329.
- Hwang, S.R.; Li, W.-H.; Lee, K.C.; Lynn, J.W.; Wu, C.-G. Spiral magnetic structure of Fe in Van der Waals gaped FeOCl and polyaniline-intercalated FeOCl, Phys. Rev. B. 2000, 62, 14157-14163.
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65.
- Wang, X.; de Groot, F.M.F.; Cramer, S.P. Spin-polarized x-ray emission of 3d transition-metal ions: A comparison via Ka and Kb detection. Phys. Rev. B 1997, 56, 4553-4564.
- Tsutsumi, K.; Nakamori H.; Ichikawa, K. X-ray Mn Kβ emission spectra of manganese oxides and manganates. Phys. Rev. B 1976, 13, 929-933.
- Rueff, J.-P.; Kao, C.-C.; Struzhkin, V.V.; Badro, J.; Shu, J.; Hemley, R.J.; Mao, H.K. Pressure-Induced High-Spin to Low-Spin Transition in FeS Evidenced by X-Ray Emission Spectroscopy. Phys. Rev. Lett. 1999, 82, 3284-3287.
- Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D. Quantitative structural refinement of Mn K edge XANES in LaMnO3 and CaMnO3 perovskites. Nucl. Instrum. Methods in Phys. Res. B 2006, 246, 158-164.
- Charles, K. Introduction to Solid State Physics, 8th ed.; Wiley, New York; 2005, pp. 323-325.
- Anderson, P.W. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 1950, 79, 350-356.







|
Na0.27FeOCl at 130 K Orthorhombic Pmmn space group (No. 59, Z=2) a= 3.0130(8) Å, b = 3.5605(9) Å, c = 11.351(7) Å | ||||||
| Atom | x | y | z | Multi | Biso(Å2) | Occupancy |
| Fe | 0.75 | 0.25 | 0.0940(9) | 2b | 0.75(5) | 1 |
| O | 0.25 | 0.25 | -0.0337(7) | 2a | 0.88(7) | 1.00(1) |
| Cl | 0.25 | 0.25 | 0.2979(6) | 2b | 1.33(9) | 0.99(2) |
| Na | 0.75 | 0.25 | -0.5870(4) | 2b | 0.03(1) | 0.27(2) |
| Rp (%) = 22.7, Rwp (%) = 31.2, χ2 = 18.6 Fe-O-Fe bond angle Fe-Fe separation Along a 131.5(5)o 3.5526(9) Å Along b 120.3(5)o 3.1621(8) Å | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).