Submitted:
01 December 2025
Posted:
03 December 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
- introduces the Infinite Transformation Principle (ITP) as a history-dependent dynamical law;
- constructs a stable backward evolution through a memory-corrected Jacobian;
- provides four independent, parameter-free predictions [14].
2. Methods: The Infinite Transformation Principle
2.1. History-Dependent Evolution
2.2. Physical Origin of Memory
2.3. Sufficient Statistics
- curvature–redshift evolution [10].
2.4. Independent Structural-Memory Diagnostics
(1) CMB Phase-Coherence Inverse Kernel Test
(2) Metallicity Structural-Memory Kernel Test (SMKT)
(3) Gaussian Heartbeat Detection
(4) Injection–Recovery Stability Tests
3. Results: Mathematical Reconstruction
3.1. Linear Stability and Jacobian Structure
3.2. Convergent Evidence
- **CMB Phase-Coherence:** The observed bipolar coefficient pattern exceeded the 99.1% null envelope. Posterior maps favoured a minimal non-zero kernel .
- **Metallicity :** We obtained and a global p-value , rejecting the smooth, memory-less null at .
- **Gaussian Heartbeat:** The flexible GP recovered a coherent 1.66–1.73 Gyr periodic component with p-value , while the smooth baseline yielded .
3.3. Cross-Consistency
4. Discussion
4.1. Coherence and Non-Randomness
4.2. Unified Constraint from Fossils
4.3. No Singular Beginning Required
4.4. Falsifiable Predictions
- Persistent CMB low-ℓ coherence ().
- Void–CMB alignment ().
- Slow curvature drift ().
- Equilateral/orthogonal primordial non-Gaussianity at large scales.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Stability of the Memory-Corrected Backward Flow
References
- Planck Collaboration. Planck 2018 Results. VII. Isotropy and Statistics of the CMB. Astron. Astrophys. 641, A7 (2020). [CrossRef]
- J. R. Bond. Cosmological Initial Conditions from Observations. Phys. Rev. Lett. 74, 4369 (1995).
- S. Zaroubi, Y. Hoffman. Reconstruction of the Initial Density Field. ApJ 416, 410 (1993).
- S. Deser, R. P. Woodard. Nonlocal Cosmology. Phys. Rev. Lett. 99, 111301 (2007). [CrossRef]
- T. Koivisto. Nonlocal Modifications of Gravity. Phys. Rev. D 77, 123513 (2008).
- A. Kehagias, A. Riotto. Non-Markovian Cosmological Perturbations. Fortschr. Phys. 66, 1800052 (2018).
- E. Mottola. Gravitational Vacuum Polarisation and Memory. Phys. Rev. D 31, 754 (1985).
- L. Modesto, L. Rachwał. Nonlocal Quantum Gravity. Int. J. Mod. Phys. D 26, 1730020 (2017). [CrossRef]
- A. Kovács et al. Galaxy Supervoids and the CMB. MNRAS 465, 4166 (2017).
- D. L. Wiltshire. Average Spatial Curvature from Structure Formation. Phys. Rev. D 80, 123512 (2009).
- A. Ashtekar, P. Singh. Loop Quantum Cosmology and Bounces. Class. Quantum Grav. 28, 213001 (2011).
- M. Gasperini, G. Veneziano. Pre-Big-Bang String Cosmology. Phys. Rep. 373, 1 (2003). [CrossRef]
- P. Steinhardt, N. Turok. The Cyclic Universe. Science 296, 1436 (2002).
- E. Komatsu. Primordial Non-Gaussianity. Class. Quantum Grav. 27, 124010 (2010).
- A. Riotto. Primordial Non-Gaussianities and Structure. Lect. Notes Phys. 738, 1 (2008).
- Planck Collaboration. Planck 2018 Results: Non-Gaussianity. Astron. Astrophys. 641, A9 (2020).
- C. Copi et al. Large-Angle CMB Anomalies: A Review. Class. Quantum Grav. 34, 084005 (2017).
- H. K. Eriksen et al. Asymmetries in the CMB. ApJ 605, 14 (2004).
- B. Falck, M. Neyrinck. Topology of Cosmic Density Fields. MNRAS 436, 2494 (2013).
- E. Platen et al. Void Topology and the Cosmic Skeleton. MNRAS 380, 551 (2007).
- M. Räsänen. Backreaction: Explained. Class. Quantum Grav. 28, 164008 (2011).
- T. Buchert. Backreaction and the Evolution of Cosmic Structure. Gen. Relativ. Gravit. 40, 467 (2008).
- D. J. Schwarz et al. CMB Anomalies after Planck. Class. Quantum Grav. 33, 184001 (2016). [CrossRef]
- M. Sahlén. Cosmic Voids as Diagnostics of the Early Universe. Phys. Rev. D 99, 063525 (2019).
- A. Pontzen, F. Governato. Inversion in Cosmology and Structure Transformation. Nature 506, 171 (2014).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
