Submitted:
27 November 2025
Posted:
28 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Minimum Spacetime Length
2.1. Gedankenexperimente for Minimum Length
2.1.1. Heisenberg Microscope with Gravity
2.1.2. Resolution vs Black Holes
2.1.3. Limitations to the Measurement of Distances
2.2. Minimum Length from Entropy Bounds
2.3. Minimum Length in Quantum Gravity Theories
3. The q-Metric
3.1. Bitensors
3.2. The q-Metric for Space-Like and Time-Like Intervals
3.3. The q-Metric for Null Intervals
3.4. Lorentzian vs Euclidean Metric
3.5. The Effects of a Minimum Length: Minimum Area, Maximal Acceleration, Dimensional Reduction at Small Scales and No Focal Points
3.6. The Ricci Scalar
4. Thermodynamic Emergent Gravity
4.1. The Thermodynamics of Horizons
4.2. A Brief History of the Thermodynamic Nature of Gravity
4.3. Padmanabhan’s Theory of Emergent Gravity
5. Conclusions
Funding
Conflicts of Interest
References
- Tong, D. Lectures on String Theory, 2012, [arXiv:hep-th/0908.0333].
- Mukhi, S. String theory: A perspective over the last 25 years. Classical and Quantum Gravity 2011, 28, 153001. [CrossRef]
- Rovelli, C. Loop Quantum Gravity. Living Reviews in Relativity 2008, 11, 5. [CrossRef]
- Ashtekar, A.; Bianchi, E. A short review of loop quantum gravity. Reports on Progress in Physics 2021, 84, 042001. [CrossRef]
- Reuter, M.; Saueressig, F. Quantum Einstein gravity. New Journal of Physics 2012, 14, 055022. [CrossRef]
- HINCHLIFFE, I.; KERSTING, N.; MA, Y.L. REVIEW OF THE PHENOMENOLOGY OF NONCOMMUTATIVE GEOMETRY. International Journal of Modern Physics A 2004, 19, 179–204. [CrossRef]
- Chamseddine, A.H.; Connes, A.; van Suijlekom, W.D. Noncommutativity and physics: A non-technical review. The European Physical Journal Special Topics 2023, 232, 3581–3588. [CrossRef]
- Garay, L.J. Quantum Gravity and Minimum Length. International Journal of Modern Physics A 1995, 10, 145–165. [CrossRef]
- Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity 2013, 16. [CrossRef]
- Mead, C.A. Possible Connection Between Gravitation and Fundamental Length. Phys. Rev. 1964, 135, B849–B862. [CrossRef]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Physics Letters B 1999, 452, 39–44. [CrossRef]
- Salecker, H.; Wigner, E.P. Quantum Limitations of the Measurement of Space-Time Distances. Phys. Rev. 1958, 109, 571–577. [CrossRef]
- Bousso, R. A covariant entropy conjecture. Journal of High Energy Physics 1999, 1999, 004–004. [CrossRef]
- Bousso, R. The holographic principle. Reviews of Modern Physics 2002, 74, 825–874. [CrossRef]
- ’t Hooft, G. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284–296, [gr-qc/9310026].
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396, [hep-th/9409089]. [CrossRef]
- Pesci, A. Information content and minimum-length metric: A drop of light. General Relativity and Gravitation 2022, 54. [CrossRef]
- Pesci, A. From Unruh temperature to the generalized Bousso bound. Classical and Quantum Gravity 2007, 24, 6219–6225. [CrossRef]
- Hod, S. Universal bound on dynamical relaxation times and black-hole quasinormal ringing. Physical Review D 2007, 75. [CrossRef]
- Pesci, A. A Semiclassical approach to eta/s bound through holography. In Proceedings of the 12th Marcel Grossmann Meeting on General Relativity, 10 2009, pp. 2324–2326, [arXiv:hep-th/0910.0766]. [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Superstring collisions at Planckian energies. Phys. Lett. B 1987, 197, 81–88. [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can space time be probed below the string size? Phys. Lett. B 1989, 216, 41–47. [CrossRef]
- Konishi, K.; Paffuti, G.; Provero, P. Minimum Physical Length and the Generalized Uncertainty Principle in String Theory. Phys. Lett. B 1990, 234, 276–284. [CrossRef]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nuclear Physics B 1995, 442, 593–619. [CrossRef]
- Percacci, R.; Vacca, G.P. Asymptotic safety, emergence and minimal length. Classical and Quantum Gravity 2010, 27, 245026. [CrossRef]
- DeWitt, B.S.; Brehme, R.W. Radiation damping in a gravitational field. Annals of Physics 1960, 9, 220–259. [CrossRef]
- Poisson, E.; Pound, A.; Vega, I. The Motion of Point Particles in Curved Spacetime. Living Reviews in Relativity 2011, 14. [CrossRef]
- Ruse, H.S. Taylor’s Theorem in the Tensor Calculus. Proceedings of the London Mathematical Society 1931, s2-32, 87–92, [https://academic.oup.com/plms/article-pdf/s2-32/1/87/4240938/s2-32-1-87.pdf]. [CrossRef]
- Synge, J.L. A Characteristic Function in Riemannian Space and its Application to the Solution of Geodesic Triangles. Proceedings of the London Mathematical Society 1931, s2-32, 241–258, [https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-32.1.241]. [CrossRef]
- Synge, J.L. Optical observations in general relativity. Rendiconti del Seminario Matematico e Fisico di Milano 1960, 30, 271–302. [CrossRef]
- Vleck, J.H.V. The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics. Proceedings of the National Academy of Sciences of the United States of America 1928, 14, 178–188.
- Morette, C. On the Definition and Approximation of Feynman’s Path Integrals. Phys. Rev. 1951, 81, 848–852. [CrossRef]
- Visser, M. van Vleck determinants: Geodesic focusing in Lorentzian spacetimes. Phys. Rev. D 1993, 47, 2395–2402. [CrossRef]
- Padmanabhan, T. Geodesic distance: A descriptor of geometry and correlator of pregeometric density of spacetime events. Modern Physics Letters A 2020, 35, 2030008. [CrossRef]
- Kouretsis, A.; Stathakopoulos, M.; Stavrinos, P. Relativistic Finsler geometry. Mathematical Methods in the Applied Sciences 2013, 37, 223–229. [CrossRef]
- Bekenstein, J.D. Relation between physical and gravitational geometry. Physical Review D 1993, 48, 3641–3647. [CrossRef]
- Kothawala, D. Intrinsic and extrinsic curvatures in Finsler esque spaces. General Relativity and Gravitation 2014, 46. [CrossRef]
- Kothawala, D.; Padmanabhan, T. Entropy density of spacetime as a relic from quantum gravity. Physical Review D 2014, 90. [CrossRef]
- Stargen, D.J.; Kothawala, D. Small scale structure of spacetime: The van Vleck determinant and equigeodesic surfaces. Physical Review D 2015, 92. [CrossRef]
- Kothawala, D. Minimal length and small scale structure of spacetime. Physical Review D 2013, 88. [CrossRef]
- Pesci, A. Looking at spacetime atoms from within the Lorentz sector, 2018, [arXiv:gr-qc/1803.05726].
- Pesci, A. Quantum metric for null separated events and spacetime atoms. Classical and Quantum Gravity 2019, 36, 075009. [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press, 2004.
- Hawking, S. The no-boundary proposal and the arrow of time. Vistas in Astronomy 1993, 37, 559–568. [CrossRef]
- Sakharov, A.D. Cosmological Transitions With a Change in Metric Signature. Sov. Phys. JETP 1984, 60, 214–218. [CrossRef]
- Visser, M. How to Wick rotate generic curved spacetime, 2017, [arXiv:gr-qc/1702.05572].
- G., J.F.B. From Euclidean to Lorentzian general relativity: The real way. Physical Review D 1996, 54, 1492–1499. [CrossRef]
- Greensite, J. Dynamical origin of the lorentzian signature of spacetime. Physics Letters B 1993, 300, 34–37. [CrossRef]
- Carlini, A.; Greensite, J. Why is spacetime Lorentzian? Physical Review D 1994, 49, 866–878. [CrossRef]
- Weinfurtner, S.; White, A.; Visser, M. Trans-Planckian physics and signature change events in Bose gas hydrodynamics. Physical Review D 2007, 76. [CrossRef]
- White, A.; Weinfurtner, S.; Visser, M. Signature change events: A challenge for quantum gravity? Classical and Quantum Gravity 2010, 27, 045007. [CrossRef]
- Chua, E.Y.S.; Callender, C. No Time for Time from No-Time. Philosophy of Science 2021, 88, 1172–1184. [CrossRef]
- Padmanabhan, T. World-Line Path Integral for the Propagator Expressed as an Ordinary Integral: Concept and Applications. Foundations of Physics 2021, 51. [CrossRef]
- Padmanabhan, T. Distribution Function of the Atoms of Spacetime and the Nature of Gravity. Entropy 2015, 17, 7420–7452. [CrossRef]
- Perri, A. Minimum length metric and horizon area variation. Master’s thesis, Università di Bologna, 2024.
- Padmanabhan, T.; Chakraborty, S.; Kothawala, D. Spacetime with zero point length is two-dimensional at the Planck scale. General Relativity and Gravitation 2016, 48. [CrossRef]
- Carlip, S.; Kowalski-Glikman, J.; Durka, R.; Szczachor, M. Spontaneous Dimensional Reduction in Short-Distance Quantum Gravity? In Proceedings of the AIP Conference Proceedings. AIP, 2009, p. 72–80. [CrossRef]
- Pesci, A. Spacetime atoms and extrinsic curvature of equi-geodesic surfaces. The European Physical Journal Plus 2019, 134. [CrossRef]
- Chakraborty, S.; Kothawala, D.; Pesci, A. Raychaudhuri equation with zero point length. Physics Letters B 2019, 797, 134877. [CrossRef]
- Pesci, A. Effective Null Raychaudhuri Equation. Particles 2018, 1, 230–237. [CrossRef]
- Pesci, A. Minimum-length Ricci scalar for null separated events. Physical Review D 2020, 102. [CrossRef]
- Gemelli, G. Observer-dependent Gauss–Codazzi formalism for null hypersurfaces in the space–time. Journal of Geometry and Physics 2002, 43, 371–383. [CrossRef]
- Hawking, S.W. Black holes in general relativity. Communications in Mathematical Physics 1972, 25, 152–166. [CrossRef]
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Communications in Mathematical Physics 1973, 31, 161–170. [CrossRef]
- Carter, B. Republication of: Black hole equilibrium states. General Relativity and Gravitation 2009, 41, 2873–2938. [CrossRef]
- Rácz, I.; Wald, R.M. Global extensions of spacetimes describing asymptotic final states of black holes. Classical and Quantum Gravity 1996, 13, 539–552. [CrossRef]
- Hawking, S.W. Gravitational Radiation from Colliding Black Holes. Phys. Rev. Lett. 1971, 26, 1344–1346. [CrossRef]
- Isi, M.; Farr, W.M.; Giesler, M.; Scheel, M.A.; Teukolsky, S.A. Testing the Black-Hole Area Law with GW150914. Phys. Rev. Lett. 2021, 127, 011103. [CrossRef]
- Israel, W. Third Law of Black-Hole Dynamics: A Formulation and Proof. Phys. Rev. Lett. 1986, 57, 397–399. [CrossRef]
- Curiel, E. Classical Black Holes Are Hot, 2014, [arXiv:gr-qc/1408.3691].
- Hawking, S.W. Particle creation by black holes. Communications in Mathematical Physics 1975, 43, 199–220. [CrossRef]
- Wald, R.M. On particle creation by black holes. Communications in Mathematical Physics 1975, 45, 9–34. [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Action integrals and partition functions in quantum gravity. Phys. Rev. D 1977, 15, 2752–2756. [CrossRef]
- Robinson, S.P.; Wilczek, F. Relationship between Hawking Radiation and Gravitational Anomalies. Phys. Rev. Lett. 2005, 95, 011303. [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking Radiation As Tunneling. Phys. Rev. Lett. 2000, 85, 5042–5045. [CrossRef]
- Bekenstein, J.D. Black holes and the second law. Lettere al Nuovo Cimento (1971-1985) 1972, 4, 737–740. [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [CrossRef]
- Brown, J.D.; York, J.W. Microcanonical functional integral for the gravitational field. Phys. Rev. D 1993, 47, 1420–1431. [CrossRef]
- Bombelli, L.; Koul, R.K.; Lee, J.; Sorkin, R.D. Quantum source of entropy for black holes. Phys. Rev. D 1986, 34, 373–383. [CrossRef]
- Callan, C.; Wilczek, F. On geometric entropy. Physics Letters B 1994, 333, 55–61. [CrossRef]
- Srednicki, M. Entropy and area. Physical Review Letters 1993, 71, 666–669. [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Physical Review D 1993, 48, R3427–R3431. [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Physics Letters B 1996, 379, 99–104. [CrossRef]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum Geometry and Black Hole Entropy. Physical Review Letters 1998, 80, 904–907. [CrossRef]
- Rovelli, C. Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 1996, 77, 3288–3291, [gr-qc/9603063]. [CrossRef]
- Domagala, M.; Lewandowski, J. Black-hole entropy from quantum geometry. Classical and Quantum Gravity 2004, 21, 5233–5243. [CrossRef]
- Meissner, K.A. Black-hole entropy in loop quantum gravity. Classical and Quantum Gravity 2004, 21, 5245–5251. [CrossRef]
- Carlip, S. Entropy from conformal field theory at Killing horizons. Classical and Quantum Gravity 1999, 16, 3327–3348. [CrossRef]
- Carlip, S. Black hole entropy from horizon conformal field theory. Nuclear Physics B - Proceedings Supplements 2000, 88, 10–16. [CrossRef]
- Carlip, S. A note on black hole entropy in loop quantum gravity. Classical and Quantum Gravity 2015, 32, 155009. [CrossRef]
- Wald, R.M. The Thermodynamics of Black Holes. Living Reviews in Relativity 2001, 4. [CrossRef]
- Curiel, E. [Lecture Slides] ’Information Loss’ is said in many ways, the responses legion, not all cogent. SIGRAV International School 2025 “Quantum effects in curved spacetiems and the thermodynamics of horizons”, 2025.
- Carlip, S. Logarithmic corrections to black hole entropy, from the Cardy formula. Classical and Quantum Gravity 2000, 17, 4175–4186. [CrossRef]
- Hayward, S.A. General laws of black-hole dynamics. Phys. Rev. D 1994, 49, 6467–6474. [CrossRef]
- Ashtekar, A.; Beetle, C.; Lewandowski, J. Geometry of generic isolated horizons. Classical and Quantum Gravity 2002, 19, 1195–1225. [CrossRef]
- Ashtekar, A.; Fairhurst, S.; Krishnan, B. Isolated horizons: Hamiltonian evolution and the first law. Physical Review D 2000, 62. [CrossRef]
- Ashtekar, A.; Beetle, C.; Lewandowski, J. Mechanics of rotating isolated horizons. Phys. Rev. D 2001, 64, 044016. [CrossRef]
- Ashtekar, A.; Krishnan, B. Dynamical Horizons: Energy, Angular Momentum, Fluxes, and Balance Laws. Physical Review Letters 2002, 89. [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738–2751. [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [CrossRef]
- Padmanabhan, T. Thermality of the Rindler horizon: A simple derivation from the structure of the inertial propagator. Physical Review D 2019, 100. [CrossRef]
- Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Soviet Physics Uspekhi 1991, 34, 394. [CrossRef]
- VISSER, M. SAKHAROV’S INDUCED GRAVITY: A MODERN PERSPECTIVE. Modern Physics Letters A 2002, 17, 977–991. [CrossRef]
- Carlip, S. Challenges for Emergent Gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 2012, 46, 200–208. [CrossRef]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Physical Review Letters 1995, 75, 1260–1263. [CrossRef]
- Eling, C.; Guedens, R.; Jacobson, T. Nonequilibrium Thermodynamics of Spacetime. Physical Review Letters 2006, 96. [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. Journal of High Energy Physics 2011, 2011. [CrossRef]
- Verlinde, E.P. Emergent Gravity and the Dark Universe. SciPost Physics 2017, 2. [CrossRef]
- Hossenfelder, S. Covariant version of Verlinde’s emergent gravity. Physical Review D 2017, 95. [CrossRef]
- Gao, S. Is Gravity an Entropic Force? Entropy 2011, 13, 936–948. [CrossRef]
- Dai, D.C.; Stojkovic, D. Inconsistencies in Verlinde’s emergent gravity. Journal of High Energy Physics 2017, 2017. [CrossRef]
- Visser, M. Conservative entropic forces. Journal of High Energy Physics 2011, 2011. [CrossRef]
- Dai, D.C.; Stojkovic, D. Comment on “Covariant version of Verlinde’s emergent gravity”. Physical Review D 2017, 96. [CrossRef]
- Kobakhidze, A. Gravity is not an entropic force. Physical Review D 2011, 83. [CrossRef]
- Kobakhidze, A. Once more: Gravity is not an entropic force, 2011, [arXiv:hep-th/1108.4161].
- Nesvizhevsky, V.V.; Börner, H.G.; Petukhov, A.K.; Abele, H.; Baeßler, S.; Rueß, F.J.; Stöferle, T.; Westphal, A.; Gagarski, A.M.; Petrov, G.A.; et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 2002, 415, 297–299. [CrossRef]
- PADMANABHAN, T. GRAVITY AS ELASTICITY OF SPACETIME: A PARADIGM TO UNDERSTAND HORIZON THERMODYNAMICS AND COSMOLOGICAL CONSTANT. International Journal of Modern Physics D 2004, 13, 2293–2298. [CrossRef]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Physics Reports 2005, 406, 49–125. [CrossRef]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Reports on Progress in Physics 2010, 73, 046901. [CrossRef]
- Padmanabhan, T.; Paranjape, A. Entropy of null surfaces and dynamics of spacetime. Physical Review D 2007, 75. [CrossRef]
- Padmanabhan, T.; Kothawala, D. Lanczos–Lovelock models of gravity. Physics Reports 2013, 531, 115–171. [CrossRef]
- Padmanabhan, T. Emergent gravity paradigm: Recent progress. Modern Physics Letters A 2015, 30, 1540007. [CrossRef]
- Padmanabhan, T. Gravity and quantum theory: Domains of conflict and contact. International Journal of Modern Physics D 2019, 29, 2030001. [CrossRef]
- Padmanabhan, T. Emergence and Expansion of Cosmic Space as due to the Quest for Holographic Equipartition, 2012, [arXiv:hep-th/1206.4916].
- PADMANABHAN, T. EQUIPARTITION OF ENERGY IN THE HORIZON DEGREES OF FREEDOM AND THE EMERGENCE OF GRAVITY. Modern Physics Letters A 2010, 25, 1129–1136. [CrossRef]
- Padmanabhan, T. Surface density of spacetime degrees of freedom from equipartition law in theories of gravity. Physical Review D 2010, 81. [CrossRef]
- Padmanabhan, T. Emergent perspective of gravity and dark energy. Research in Astronomy and Astrophysics 2012, 12, 891–916. [CrossRef]
- Foit, V.F.; Kleban, M. Testing Quantum Black Holes with Gravitational Waves. Class. Quant. Grav. 2019, 36, 035006, [arXiv:hep-th/1611.07009]. [CrossRef]
- Cardoso, V.; Foit, V.F.; Kleban, M. Gravitational wave echoes from black hole area quantization. J. Cosmol. Astropart. Phys. 2019, 08, 006, [arXiv:hep-th/1902.10164].
- Agullo, I.; Cardoso, V.; del Rio, A.; Maggiore, M.; Pullin, J. Potential gravitational wave signatures of quantum gravity. Phys. Rev. Lett. 2021, 126, 041302, [arXiv:gr-qc/2007.13761].
- Datta, S.; Phukon, K.S. Imprint of black hole area quantization and Hawking radiation on inspiraling binary. Phys. Rev. D 2021, 104, 124062, [arXiv:gr-qc/2105.11140]. [CrossRef]
- Sago, N.; Tanaka, T. Oscillations in the extreme mass-ratio inspiral gravitational wave phase correction as a probe of a reflective boundary of the central black hole. Phys. Rev. D 2021, 104, 064009, [arXiv:gr-qc/2106.07123]. [CrossRef]
- Krishnendu, N.V.; Perri, A.; Chakraborty, S.; Pesci, A. Probing the existence of a minimal length through compact binary inspiral 2025. [arXiv:gr-qc/2505.22877].
- Pesci, A. Small-scale metric structure and horizons: Probing the nature of gravity. Journal of Physics: Conference Series 2025, 3017, 012024. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
