Submitted:
25 November 2025
Posted:
27 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Summary of Teleparallel Gravity and Field Equations
2.1. Teleparallel -Gravity Theory Field Equations and Torsional Quantities
2.2. Teleparallel Robertson-Walker Spacetime Geometry
- 1.
- : ,
- 2.
- : and ,
- 3.
- : and .
2.3. Einstein-Maxwell Conservation Law Solutions and Energy Conditions
- Weak Energy Condition (WEC): , and .
- Strong Energy Condition (SEC): , and .
- Null Energy Condition (NEC): and .
- Dominant Energy Condition (DEC): and .
- 1.
-
General electromagnetic universe: For any and , eqn (17) becomes:By setting and , we find that , leading to for consistency. By using the last constraint and then by diagonalisation, we find that and the WEC, SEC, NEC and DEC are all satisfied by the , and conditions. Then eqn (15) becomes:From the 2nd CL, we will find that . Then the 1st CL solution in terms of torsion scalar T is exactly:
- 2.
-
Pure electric universe limit: Eqn (17) becomes:
- 3.
-
Pure magnetic universe limit: Eqn (17) becomes:
3. Electromagnetic Teleparallel Field Equations Solutions
- 1.
-
flat or non-curved:The eqn (26) yields to and from Section 2.3 results, we will find that . In this case, eqns (24)–(25) becomeBy merging eqns (27)–(28), we find the unified FE:
- 2.
-
negative curved:From eqn (35) and using ansatz, we find a characteristic equation yielding to solutions:By substitution of relation and merging eqns (33)–(34), we find the unified FE:
- 3.
-
positive curved:From eqn (47) and using ansatz, we find the characteristic equation for :We simplify and unify by substitution of the eqns (45)–(46):The possible solutions of eqn (48) are with the far future approximation ( as in ref [58], except for subcase):
- (a)
-
(slow expansion and − solution):By substitution, eqn (49) becomes:For the very far future approximation: Eqn (51) becomes leading to as for the case.
- (b)
-
(linear expansion):By substitution, eqn (49) becomes:
- (c)
-
(fast expansion and − solution):By substitution, eqn (49) becomes:
- (d)
-
(very fast expansion limit):
4. Physical Interpretations and Experimental Data Comparisons
4.1. Electromagnetic Field Interpretations
4.2. Experimental Data Comparison Guidelines
5. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| AdS | Anti-deSitter |
| BH | Black Holes |
| CL | Conservation Law |
| DE | Dark Energy |
| Eqn | Equation |
| FE | Directory of open access journals |
| KS | Kantowski-Sachs |
| PF | Perfect Fluids |
| SF | Scalar Field |
| SS | Spherically Symmetric |
| TdS | Teleparallel deSitter |
| TRW | Teleparallel Robertson-Walker |
References
- Lucas, T.G.; Obukhov, Y.; Pereira, J.G. Regularizing role of teleparallelism. Physical Review D 2009, 80, 064043. [Google Scholar] [CrossRef]
- Krššák, M.; van den Hoogen, R. J.; Pereira, J. G.; Boehmer, C. G.; Coley, A. A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Classical and Quantum Gravity 2019, 36, 183001. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. Report of Progress in Physics 2023, 86, 026901. [Google Scholar] [CrossRef]
- Krssak, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. The European Physical Journal C 2015, 75, 519. [Google Scholar] [CrossRef]
- Coley, A. A.; van den Hoogen, R. J.; McNutt, D.D. Symmetry and Equivalence in Teleparallel Gravity. Journal of Mathematical Physics 2020, 61, 072503. [Google Scholar] [CrossRef]
- McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy groups. Journal of Mathematical Physics 2023, 64, 032503. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, An Introduction. Springer, 2013. [Google Scholar]
- Olver, P. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Krššák, M.; Saridakis, E. N. The covariant formulation of f(T) gravity. Classical and Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflation. Physical Review D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Physical Review D 2008, 78, 124019. [Google Scholar] [CrossRef]
- Linder, E. Einstein’s Other Gravity and the Acceleration of the Universe. Physical Review D 2010, 81, 127301, Erratum in Physical Review D 2010, 82, 109902. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Physical Review D 1979, 19, 3524. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Dialektopoulos, K.F. Non-Linear Obstructions for Consistent New General Relativity. Journal of Cosmological and Atroparticle Physics 2020, 2020, 018. [Google Scholar] [CrossRef]
- Bahamonde, S.; Blixt, D.; Dialektopoulos, K.F.; Hell, A. Revisiting Stability in New General Relativity. Physical Review D 2024, 111, 064080. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) Gravit. Physics Reports 2023, 1–78. [Google Scholar]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Cosmological teleparallel perturbations. Journal of Cosmology and Astroparticle Physics 2024, 03, 63. [Google Scholar] [CrossRef]
- Flathmann, K.; Hohmann, M. Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity. Physical Review D 2022, 105, 044002. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Physical Review D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Nakayama, Y. Geometrical trinity of unimodular gravity. Classical and Quantum Gravity 2023, 40, 125005. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.-D. f(Q,T) gravity. The European Physical Journal C 2019, 79, 708. [Google Scholar] [CrossRef]
- Maurya, D.C.; Myrzakulov, R. Exact Cosmology in Myrzakulov Gravity. The European Physical Journal C 2024, 84, 625. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Physical Review D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Momeni, D.; Myrzakulov, R. Myrzakulov Gravity in Vielbein Formalism: A Study in Weitzenböck Spacetime. Nuclear Physics B 2025, 1015, 116903. [Google Scholar] [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. Myrzakulov F(T,Q) gravity: Cosmological implications and constraints. Physica Scripta 2024, 99, 10. [Google Scholar] [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. FLRW Cosmology in Metric-Affine F(R,Q) Gravity. Chin. Phys. C 2024, 48, 125101. [Google Scholar] [CrossRef]
- Maurya, D.C.; Myrzakulov, R. Transit cosmological models in Myrzakulov F(R,T) gravity theory. The European Physical Journal C 2024, 84, 534. [Google Scholar] [CrossRef]
- Mandal, S.; Myrzakulov, N.; Sahoo, P.K.; Myrzakulov, R. Cosmological bouncing scenarios in symmetric teleparallel gravity. The European Physical Journal Plus 2021, 136, 760. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Approaches to spherically symmetric solutions in f(T)-gravity. Universe 2021, 7, 121. [Google Scholar] [CrossRef]
- Golovnev, A. Issues of Lorentz-invariance in f(T)-gravity and calculations for spherically symmetric solutions. Classical and Quantum Gravity 2021, 38, 197001. [Google Scholar] [CrossRef]
- DeBenedictis, A.; Ilijić, S.; Sossich, M. On spherically symmetric vacuum solutions and horizons in covariant f(T) gravity theory. Physical Review D 2022, 105, 084020. [Google Scholar] [CrossRef]
- Bahamonde, S.; Camci, U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462. [Google Scholar] [CrossRef]
- Awad, A.; Golovnev, A.; Guzman, M.-J.; El Hanafy, W. Revisiting diagonal tetrads: New Black Hole solutions in f(T)-gravity. The European Physical Journal C 2022, 82, 972. [Google Scholar] [CrossRef]
- Bahamonde, S.; Golovnev, A.; Guzmán, M.-J.; Said, J.L.; Pfeifer, C. Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions. Journal of Cosmological and Atroparticle Physics 2022, 1, 037. [Google Scholar] [CrossRef]
- Bahamonde, S.; Faraji, S.; Hackmann, E.; Pfeifer, C. Thick accretion disk configurations in the Born-Infeld teleparallel gravity. Physical Review D 2022, 106, 084046. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Quadratic and cubic spherically symmetric black holes in the modified teleparallel equivalent of general relativity: Energy and thermodynamics. Classical and Quantum Gravity 2021, 38, 125004. [Google Scholar] [CrossRef]
- Pfeifer, C.; Schuster, S. Static spherically symmetric black holes in weak f(T)-gravity. Universe 2021, 7, 153. [Google Scholar] [CrossRef]
- El Hanafy, W.; Nashed, G.G.L. Exact Teleparallel Gravity of Binary Black Holes. Astrophys. Space Sci. 2016, 361, 68. [Google Scholar] [CrossRef]
- Aftergood, J.; DeBenedictis, A. Matter Conditions for Regular Black Holes in f(T) Gravity. Physical Review D 2014, 90, 124006. [Google Scholar] [CrossRef]
- Bahamonde, S.; Doneva, D.D.; Ducobu, L.; Pfeifer, C.; Yazadjiev, S.S. Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity. Physical Review D 2023, 107, 104013. [Google Scholar] [CrossRef]
- Bahamonde, S.; Ducobu, L.; Pfeifer, C. Scalarized Black Holes in Teleparallel Gravity. Journal of Cosmological and Atroparticle Physics 2022, 2022, 018. [Google Scholar] [CrossRef]
- Iorio, L.; Radicella, N.; Ruggiero, M.L. Constraining f(T) gravity in the Solar System. Journal of Cosmological and Atroparticle Physics 2015, 2015, 021. [Google Scholar] [CrossRef]
- Pradhan, S.; Bhar, P.; Mandal, S.; Sahoo, P.K.; Bamba, K. The Stability of Anisotropic Compact Stars Influenced by Dark Matter under Teleparallel Gravity: An Extended Gravitational Deformation Approach. The European Physical Journal C 2025, 85, 127. [Google Scholar] [CrossRef]
- Mohanty, D.; Ghosh, S.; Sahoo, P.K. Charged gravastar model in noncommutative geometry under f(T) gravity. Physics of the Dark Universe 2025, 46, 101692. [Google Scholar] [CrossRef]
- Calza, M.; Sebastiani, L. A class of static spherically symmetric solutions in f(T)-gravity. The European Physical Journal C 2024, 84, 476. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Spherically symmetric teleparallel geometries. The European Physical Journal C 2024, 84, 334. [Google Scholar] [CrossRef]
- Landry, A. Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity. Axioms 2024, 13, 333. [Google Scholar] [CrossRef]
- Landry, A. Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity. Symmetry 2024, 16, 953. [Google Scholar] [CrossRef]
- van den Hoogen, R.J.; Forance, H. Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames. Journal of Cosmology and Astrophysics 2024, 11, 033. [Google Scholar] [CrossRef]
- Landry, A. Scalar field Kantowski-Sachs spacetime solutions in teleparallel F(T) gravity. Universe 2025, 11, 26. [Google Scholar] [CrossRef]
- Landry, A. Scalar Field Static Spherically Symmetric Solutions in Teleparallel F(T) Gravity. Mathematics 2025, 13, 1003. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Generalized Teleparallel de Sitter geometries. The European Physical Journal C 2023, 83, 977. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics. Physics Letter B 2020, 810, 135806. [Google Scholar] [CrossRef]
- Landry, A. Scalar field source Teleparallel Robertson-Walker F(T)-gravity solutions. Mathematics 2025, 13, 374. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; Gholami, F. Teleparallel Robertson-Walker Geometries and Applications. Universe 2023, 9, 454. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetric Teleparallel Geometries, Classical and Quantum Gravity 2022, 39, 22LT01. [CrossRef]
- Landry, A. Chaplygin and Polytropic gases Teleparallel Robertson-Walker F(T) gravity solutions. Mathematics 2025, 13, 3143. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Cuzinatto, R.R.; Medeiros, L.G. Analytic solutions for the Λ-FRW Model. Foundations of Physics 2006, 36, 1736–1752. [Google Scholar] [CrossRef]
- Casalino, A.; Sanna, B.; Sebastiani, L.; Zerbini, S. Bounce Models within Teleparallel modified gravity, Physical Review D 2021, 103, 023514. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. General Relativity and Gravitation 2018, 50, 53. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Hohmann, M.; Said, J.L.; Pfeifer, C.; Saridakis, E.N. Perturbations in Non-Flat Cosmology for f(T) gravity. European Physical Journal C 2023, 83, 193. [Google Scholar] [CrossRef]
- Gholami, F.; Landry, A. Cosmological solutions in teleparallel F(T,B) gravity. Symmetry 2025, 17, 60. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Physical Review D 2019, 100, 084002. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Report of Progress in Physics 2016, 79, 106901. [Google Scholar] [CrossRef]
- Dixit, A.; Pradhan, A. Bulk Viscous Flat FLRW Model with Observational Constraints in f(T,B) Gravity. Universe 2022, 8, 650. [Google Scholar] [CrossRef]
- Chokyi, K.K.; Chattopadhyay, S. Cosmological Models within f(T,B) Gravity in a Holographic Framework. Particles 2024, 7, 856. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Exact charged black-hole solutions in the D-dimensional teleparallel equivalent of general relativity. Progress of Theoretical and Experimental Physics 2016, 4, 043E01. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Charged and Non-Charged Black Hole Solutions in Mimetic Gravitational Theory. Symmetry 2018, 10, 559. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Regular Charged Solutions in Teleparallel Theory of Gravity. 2006; preprint. [Google Scholar] [CrossRef]
- Nashed, G.G.L. General regular charged space-times in teleparallel equivalent of general relativity. the European Physical Journal C 2007, 51, 377. [Google Scholar] [CrossRef]
- Mourad, M.F.; Abdelgaber, M. Gravitational entropy of stringy charged black holes in teleparallel gravity. Indian Journal of Physics 2023, 97, 4503. [Google Scholar] [CrossRef]
- Yasrina, A.; Uddarojad, A.A.R.; Hermanto, A.; Rosyid, M.F. On teleparallel gravitational description of electric and magnetic black holes: covariant formulation 2024, HAL preprint. Available online: https://hal.science/hal-04731286v1.
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press, 2010. [Google Scholar]
- Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Advances in Space Research 2017, 60, 166. [Google Scholar] [CrossRef]
- Iosifidis, D. Cosmological Hyperfluids, Torsion and Non-metricity. European Physical Journal C 2020, 80, 1042. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Homogeneous and isotropic cosmology in general teleparallel gravity. European Physical Journal C 2023, 83, 315. [Google Scholar] [CrossRef] [PubMed]
- Heisenberg, L.; Hohmann, M. Gauge-invariant cosmological perturbations in general teleparallel gravity. European Physical Journal C 2024, 84, 462. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; San Francisco: W. H. Freeman, 1973. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Classical Theory of Fields (Fourth Revised English ed.); Pergamon: Oxford, 1973. [Google Scholar]
- Feynman, R.P.; Moringo, F.B.; Wagner, W.G. Feynman Lectures on Gravitation; Addison-Wesley, 1995. [Google Scholar]
- Thorne, K.P.; Macdonald, D. Electrodynamics in curved spacetime: 3 + 1 formulation. Mon. Not. Royal Astronomical Society 1982, 198, 339. [Google Scholar] [CrossRef]
- Kontou, E.-A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Classical and Quantum Gravity 2020, 37, 193001. [Google Scholar] [CrossRef]
- DESI Collaboration. The Dark Energy Survey: Cosmology Results With 1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset. The Astrophysical Journal Letters 2024, 973, L14. [Google Scholar] [CrossRef]
- DESI Collaboration. DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. Journal of Cosmological Astroparticle Physics 2025, 02, 021. [Google Scholar]
- DESI Collaboration. Dark Energy Survey: implications for cosmological expansion models from the final DES Baryon Acoustic Oscillation and Supernova data. preprint. 2025. [Google Scholar] [CrossRef]
- DESI Collaboration. DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints. preprint. 2025. [Google Scholar] [CrossRef]
- DESI Collaboration. DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest. Physical Review D, 2025; to appear soon. [Google Scholar] [CrossRef]
- Notari, A.; Redi, M.; Tesi, A. BAO vs. SN evidence for evolving dark energy. Journal of Cosmological Astroparticle Physics 2025, 04, 048. [Google Scholar] [CrossRef]
- Berti, M.; et al. Reconstructing the dark energy density in light of DESI BAO observations. Physical Review D 2025, 112, 023518. [Google Scholar] [CrossRef]
- Myrzakulov, R. Accelerating universe from F(T) gravity. European Physical Journal C 2011, 71, 1752. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Saez-Gomez, D.; Tsyba, P. Cosmological solutions in F(T) gravity with the presence of spinor fields. International Journal of Geometric Methods in Modern Physics 2015, 12, 1550023. [Google Scholar] [CrossRef]
- Paliathanasis, A. F(T) Cosmology with Nonzero Curvature. Modern Physics Letters A 2021, 36, 2150261. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; Sandoval-Orozco, R. f(T) gravity after DESI Baryon acoustic oscillation and DES supernovae 2024 data. Journal of High Energy Astrophysics 2024, 42, 217–221. [Google Scholar] [CrossRef]
- Aguilar, A.; Escamilla-Rivera, C.; Said, J.L.; Mifsud, J. Non-fluid like Boltzmann code architecture for early times f(T) cosmologies. SSRN, 2024; preprint. [Google Scholar]
- Sandoval-Orozco, R.; Escamilla-Rivera, C.; Briffa, R.; Said, J.L. Testing f(T) cosmologies with HII Hubble diagram and CMB distance priors. Physics of the Dark Universe 2024, 46, 101641. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).