Submitted:
20 November 2025
Posted:
21 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cognitive Functioning in PKU
3. Cognitive Functioning in Young PKU Patients
4. The Roles of Early Verbal Abilities and Motor Skills in Cognitive Development
5. Aging and Cognitive Decline in PKU
6. Biomarkers for Cognition: Commonalities Between PKU and Neurodevelopmental Disorders
7. Biomarkers for Cognition: Commonalities Between PKU and Neurodegenerative Diseases
8. Nutrients and Cognition in PKU, Neurodevelopmental Disorders and Neurodegenerative Disorders
9. Conclusion
Funding
Conflicts of Interest
References
- Bilder, D.A.; Noel, J.K.; Baker, E.R.; Irish, W.; Chen, Y.; Merilainen, M.J.; Prasad, S.; Winslow, B.J. Systematic review and meta-analysis of neuropsychiatric symptoms and executive functioning in adults with phenylketonuria. Dev. Neuropsychol. 2016, 41, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Christ, S.E.; Huijbregts, S.C.; de Sonneville, L.M.; White, D.A. Executive function in early-treated phenylketonuria: Profile and underlying mechanisms. Mol. Genet. Metab. 2010, 99 (Suppl 1), S22–S32. [Google Scholar] [CrossRef]
- Huijbregts, S.C.; de Sonneville, L.M.; van Spronsen, F.J.; Licht, R.; Sergeant, J.A. The neuropsychological profile of early and continuously treated phenylketonuria: Orienting, vigilance, and maintenance versus manipulation functions of working memory. Neurosci. Biobehav. Rev. 2002, 26, 697–712. [Google Scholar] [CrossRef]
- Jahja, R.; Huijbregts, S.C.J.; de Sonneville, L.M.J.; van der Meere, J.J.; Legemaat, A.M.; Bosch, A.M.; Hollak, C.E.M.; Rubio-Gozalbo, M.E.; Brouwers, M.C.G.J.; Hofstede, F.C.; et al. Cognitive profile and mental health in adult phenylketonuria: A PKU-COBESO study. Neuropsychology. 2017, 31, 437–447. [Google Scholar] [CrossRef]
- Jahja, R.; van Spronsen, F.J.; de Sonneville, L.M.J.; van der Meere, J.J.; Bosch, A.M.; Hollak, C.E.M.; Rubio-Gozalbo, M.E.; Brouwers, M.C.G.J.; Hofstede, F.C.; de Vries, M.C.; et al. Social-cognitive functioning and social skills in patients with early treated phenylketonuria: A PKU-COBESO study. J Inherit Metab Dis. 2016, 39, 355–362. [Google Scholar] [CrossRef]
- Romani, C.; Olson, A.; Aitkenhead, L.; Baker, L.; Patel, D.; van Spronsen, F.J.; MacDonald, A.; van Wegberg, A.M.J.; Huijbregts, S.C. Meta-analyses of cognitive functions in early-treated adults with phenylketonuria. Neurosci. Biobehav. Rev. 2022, 143, 104925. [Google Scholar] [CrossRef]
- Romani, C.; Huijbregts, S.; van Spronsen, F.J.; MacDonald, A.; van Wegberg, A.M.J.; Staines, M.; Olson, A. Meta-analysis of cognitive outcomes in children and adults with early treated phenylketonuria - Results across functions. Mol Genet Metab. 2025, 146, 109210. [Google Scholar] [CrossRef] [PubMed]
- Waisbren, S.E.; Noel, K.; Fahrbach, K.; Cella, C.; Frame, D.; Dorenbaum, A.; Levy, H. Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol. Genet. Metab. 2007, 92, 63–70. [Google Scholar] [CrossRef]
- Boot, E.; Hollak, C.E.M.; Huijbregts, S.C.J.; Jahja, R.; van Vliet, D.; Nederveen, A.J.; Nieman, D.H.; Bosch, A.M. , Bour, L.J.; Bakermans, A.J.; et al. Cerebral dopamine deficiency, plasma monoamine alterations and neurocognitive deficits in adults with phenylketonuria. Psychol Med. 2017, 47, 2854–2865. [Google Scholar] [CrossRef]
- González, M.J.; Polo, M.R.; Ripollés, P.; Gassió, R.; Ormazabal, A.; Sierra, C.; Roura, R.C.; Artuch, R.; Campistol, J. White matter microstructural damage in early treated phenylketonuric patients. Orphanet J Rare Dis. 2018, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Hood, A.; Antenor-Dorsey, J.A.; Rutlin, J.; Hershey, T.; Shimony, J.S.; McKinstry, R.C.; Grange, D.K.; Christ, S.E.; Steiner, R.; White, D.A. Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain white matter integrity in children with phenylketonuria. Mol. Genet. Metab. 2015, 114, 19–24. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Chiarotti, F.; Berillo, L.; Caputi, C.; Carducci, C.; Di Biasi, C.; Manti, F.; Nardecchia, F.; Leuzzi, V. The outcome of white matter abnormalities in early treated phenylketonuric patients: A retrospective longitudinal long-term study. Mol. Genet. Metab. 2015, 116, 171–177. [Google Scholar] [CrossRef]
- Pilotto, A.; Blau, N.; Leks, E.; Schulte, C.; Deuschl, C.; Zipser, C.; Piel, D.; Freisinger, P.; Gramer, G.; Kölker, S.; et al. Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. J. Inherit. Metab. Dis. 2019, 42, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Zipser, C.M.; Leks, E.; Haas, D.; Gramer, G.; Freisinger, P.; Schaeffer, E.; Liepelt-Scarfone, I.; Brockmann, K.; Maetzler, W.; et al. Phenylalanine effects on brain function in adult phenylketonuria. Neurology 2021, 96, e399–e411. [Google Scholar] [CrossRef]
- Thomas, L.; Aitkenhead, L.; Stepien, K.M.; Woodall, A.; Macdonald, A.; Romani, C. Cognition and wellbeing in middle-aged early treated people with phenylketonuria: Preliminary results and methodological lessons. Mol. Genet. Metab. Rep. 2024, 41, 101160. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.H.; Hahn, C.S.; Suwalsky, J.T. Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychol. Sci. 2013, 24, 1906–1917. [Google Scholar] [CrossRef]
- Eadie, P.; Bavin, E.L.; Bretherton, L.; Cook, F.; Gold, L.; Mensah, F.; Wake, M.; Reilly, S. Predictors in Infancy for Language and Academic Outcomes at 11 Years. Pediatrics. 2021, 147, e20201712. [Google Scholar] [CrossRef]
- Wise, J.C.; Sevcik, R.A.; Morris, R.D.; Lovett, M.W.; Wolf, M. The relationship among receptive and expressive vocabulary, listening comprehension, pre-reading skills, word identification skills, and reading comprehension by children with reading disabilities. J. Speech Lang. Hear. Res. 2007, 50, 1093–1109. [Google Scholar] [CrossRef] [PubMed]
- Poranen-Clark, T.; von Bonsdorff, M.B.; Lahti, J.; Räikkönen, K.; Osmond, C.; Rantanen, T.; Kajantie, E.; Eriksson, J.G. Infant motor development and cognitive performance in early old age: The Helsinki Birth Cohort Study. Age 2015, 37, 9785. [Google Scholar] [CrossRef]
- Burton, B.K.; Hermida, Á. , Bélanger-Quintana, A.; Bell, H.; Bjoraker, K.J.; Christ, S.E.; Grant, M.L.; Harding, C.O.; Huijbregts, S.C.J.; Longo, N.; et al. Management of early treated adolescents and young adults with phenylketonuria: Development of international consensus recommendations using a modified Delphi approach. Mol. Genet. Metab. 2022, 137, 114–126. [Google Scholar] [CrossRef]
- Smith, W.E.; Berry, S.A.; Bloom, K.; Brown, C.; Burton, B.K.; Demarest, O.M.; Jenkins, G.P.; Malinowski, J.; McBride, K.L.; Mroczkowski, H.J.; et al. Phenylalanine hydroxylase deficiency diagnosis and management: A 2023 evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2025, 27, 101289. [Google Scholar] [CrossRef]
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Beblo, S.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Coşkun, T.; et al. European guidelines on diagnosis and treatment of phenylketonuria: First revision. Mol. Genet. Metab. 2025, 145, 109125. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, S.C.; de Sonneville, L.M.; Licht, R.; van Spronsen, F.J.; Sergeant, J.A. Short-term dietary interventions in children and adolescents with treated phenylketonuria: Effects on neuropsychological outcome of a well-controlled population. J. Inherit. Metab. Dis. 2002, 25, 419–430. [Google Scholar] [CrossRef]
- Bilder, D.A.; Arnold, G.L.; Dimmock, D.; Grant, M.L.; Janzen, D.; Longo, N.; Nguyen-Driver, M.; Jurecki, E. Improved attention linked to sustained phenylalanine reduction in adults with early-treated phenylketonuria. Am. J. Med. Genet. A. 2022, 188, 768–778. [Google Scholar] [CrossRef]
- Burgess, N.M.; Kelso, W.; Malpas, C.B.; Winton-Brown, T.; Fazio, T.; Panetta, J.; de Jong, G.; Neath, J.; Atherton, S.; Velakoulis, D.; et al. The effect of improved dietary control on cognitive and psychiatric functioning in adults with phenylketonuria: the ReDAPT study. Orphanet J.Rare Dis. 2021, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Manti, F.; Nardecchia, F.; De Leo, S.; Carducci, C.; Romani, C.; Palermo, L.; Angeloni, A.; Leuzzi, V. Towards precision medicine for phenylketonuria: The effect of restoring a strict metabolic control in adult patients with early-treated phenylketonuria. Mol. Genet. Metab. 2023, 140, 107666. [Google Scholar] [CrossRef] [PubMed]
- ten Hoedt, A.E.; de Sonneville, L.M.; Francois, B.; ter Horst, N.M.; Janssen, M.C.; Rubio-Gozalbo, M.E.; Wijburg, F.A.; Hollak, C.E.; Bosch, A.M. High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: a randomised, double-blind, placebo-controlled, crossover trial. J. Inherit. Metab. Dis. 2011, 34, 165–171. [Google Scholar] [CrossRef]
- Aitkenhead, L.; Krishna, G.; Ellerton, C.; Moinuddin, M.; Matcham, J.; Shiel, L.; Hossain, S.; Kiffin, M.; Foley, J.; Skeath, R.; et al. Long-term cognitive and psychosocial outcomes in adults with phenylketonuria. J. Inherit. Metab. Dis. 2021, 44, 1353–1368. [Google Scholar] [CrossRef]
- Feldmann, R.; Osterloh, J.; Onon, S.; Fromm, J.; Rutsch, F.; Weglage, J. Neurocognitive functioning in adults with phenylketonuria: Report of a 10-year follow-up. Mol. Genet. Metab. 2019, 126, 246–249. [Google Scholar] [CrossRef]
- Huijbregts, S.C.; de Sonneville, L.M.; Licht, R.; van Spronsen, F.J.; Verkerk, P.H.; Sergeant, J.A. Sustained attention and inhibition of cognitive interference in treated phenylketonuria: associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia 2002, 40, 7–15. [Google Scholar] [CrossRef]
- Jahja, R.; van Spronsen, F.J.; de Sonneville, L.M.J.; van der Meere, J.J. , Bosch, A.M.; Hollak, C.E.M., Rubio-Gozalbo, M.E., Brouwers, M.C.G.J.; Hofstede, F.C.; de Vries, M.C.; et al. Long-term follow-up of cognition and mental health in adult phenylketonuria: A PKU-COBESO study. Behav. Genet. 2017, 47, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Janos, A.L.; Grange, D.K.; Steiner, R.D.; White, D.A. Processing speed and executive abilities in children with phenylketonuria. Neuropsychology 2012, 26, 735–743. [Google Scholar] [CrossRef]
- Moyle, J.J.; Fox, A.M.; Arthur, M.; Bynevelt, M.; Burnett, J.R. Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol. Rev. 2007, 17, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Boland, K.M.; Schoen, M.S.; Singh, R.H.; Clocksin, H.E.; Cissne, M.N.; Christ, S.E. The relationship between working memory and anxiety in individuals with early treated phenylketonuria (PKU). Neuropsychology 2024, 38, 368–378. [Google Scholar] [CrossRef]
- Huijbregts, S.C.J.; Bosch, A.M.; Simons, Q.A.; Jahja, R.; Brouwers, M.C.G.J.; de Sonneville, L.M.J.; de Vries, M.C.; Hofstede, F.C.; Hollak, C.E.M.; Janssen, M.C.H. , et al. The impact of metabolic control and tetrahydrobiopterin treatment on health related quality of life of patients with early-treated phenylketonuria: A PKU-COBESO study. Mol. Genet. Metab. 2018, 125, 96–103. [Google Scholar] [CrossRef]
- Palermo, L.; MacDonald, A.; Limback, E.; Robertson, L.; Howe S, Geberhiwot, T.; Romani, C. Emotional health in early-treated adults with phenylketonuria (PKU): Relationship with cognitive abilities and blood phenylalanine. J. Clin. Exp. Neuropsychol. 2020, 42, 142–159. [CrossRef]
- Best, J.R.; Miller, P.H. A developmental perspective on executive function. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Huijbregts, S.C.; Gassió, R.; Campistol, J. Executive functioning in context: Relevance for treatment and monitoring of phenylketonuria. Mol. Genet. Metab. 2013, 110, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- Griffith-Lendering, M.F.; Huijbregts, S.C.; Vollebergh, W.A.; Swaab, H. Motivational and cognitive inhibitory control in recreational cannabis users. J. Clin. Exp. Neuropsychol. 2012, 34, 688–697. [Google Scholar] [CrossRef]
- Huijbregts, S.C.; Warren, A.J.; de Sonneville, L.M.; Swaab-Barneveld, H. Hot and cool forms of inhibitory control and externalizing behavior in children of mothers who smoked during pregnancy: an exploratory study. J. Abnorm. Child Psychol. 2008, 36, 323–333. [Google Scholar] [CrossRef]
- Kerr, A.; Zelazo, P.D. Development of "hot" executive function: the children's gambling task. Brain Cogn. 2004, 55, 148–157. [Google Scholar] [CrossRef]
- Schweizer, S.; Gotlib, I.H.; Blakemore, S.J. The role of affective control in emotion regulation during adolescence. Emotion 2020, 20, 80–86. [Google Scholar] [CrossRef]
- Dindo, L.; Brock, R.L.; Aksan, N.; Gamez, W.; Kochanska, G.; Clark, L.A. Attachment and effortful control in toddlerhood predict academic achievement over a decade later. Psychol. Sci. 2017, 28, 1786–1795. [Google Scholar] [CrossRef]
- Miguel, P.M.; Meaney, M.J.; Silveira, P.P. New research perspectives on the interplay between genes and environment on executive function development. Biol. Psychiatry 2023, 94, 131–141. [Google Scholar] [CrossRef]
- Murty, V.P.; Calabro, F.; Luna, B. The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci. Biobehav. Rev. 2016, 70, 46–58. [Google Scholar] [CrossRef]
- Lee, D.; Boulton, K.A.; Sun, C.; Phillips, N.L.; Munro, M.; Kumfor, F.; Demetriou, E.A.; Guastella, A.J. Attention and executive delays in early childhood: a meta-analysis of neurodevelopmental conditions. Mol. Psychiatry 2025, 30, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Stucke, N.J.; Doebel, S. Early childhood executive function predicts concurrent and later social and behavioral outcomes: A review and meta-analysis. Psychol. Bull. 2024, 150, 1178–1206. [Google Scholar] [CrossRef] [PubMed]
- Romani, C.; Palermo, L.; MacDonald, A.; Limback, E.; Hall, S.K.; Geberhiwot, T. The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: Effects across tasks and developmental stages. Neuropsychology 2017, 31, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Hood, A.; Grange, D.K.; Christ, S.E.; Steiner, R.; White, D.A. Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Mol. Genet. Metab. 2014, 111, 445–451. [Google Scholar] [CrossRef]
- Romani, C.; Manti, F.; Nardecchia, F.; Valentini, F.; Fallarino, N.; Carducci, C.; De Leo, S.; MacDonald, A.; Palermo, L.; Leuzzi, V. Adult cognitive outcomes in phenylketonuria: Explaining causes of variability beyond average Phe levels. Orphanet J. Rare Dis. 2019, 14, 273. [Google Scholar] [CrossRef]
- Huijbregts, S.C.; de Sonneville, L.M.; van Spronsen, F.J.; Berends, I.E.; Licht, R.; Verkerk, P.H.; Sergeant, J.A. Motor function under lower and higher controlled processing demands in early and continuously treated phenylketonuria. Neuropsychology 2003, 17, 369–379. [Google Scholar] [CrossRef]
- van Steenis, E.M.; Huijbregts, S.C.J.; Romani, C.; Schoemaker, J.A.; van Vliet, N.; Kuypers, A.M.; Rubio-Gozalbo, M.E.; Rennings, A.J.M.; de Vries, M.; Heiner-Fokkema, M.R.; et al. Agreement between the Amsterdam Neuropsychological Tasks and the Cambridge Neuropsychological Test Automated Battery in the assessment of PKU patients and healthy controls. Mol. Genet. Metab. 2025, 145, 109126. [Google Scholar] [CrossRef]
- Christ, S.E.; Clocksin, H.E.; Zalik, M.; Goodlett, B.D.; Sacharow, S.J.; Abbene, E.E. Neuropsychological assessment of adults with phenylketonuria using the NIH toolbox. Mol. Genet. Metab. 2023, 139, 107579. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Anderson, J.E.; Richler, J.; Wallner-Allen, K.; Beaumont, J.L.; Conway, K.P.; Gershon, R.; Weintraub, S. NIH Toolbox Cognition Battery (CB): validation of executive function measures in adults. J. Int. Neuropsychol. Soc. 2014, 20, 620–629. [Google Scholar] [CrossRef]
- Merkel, M.; Berg, D.; Brüggemann, N.; Classen, J.; Mainka, T.; Zittel, S.; Muntau, A.C. Characterisation and differential diagnosis of neurological complications in adults with phenylketonuria: literature review and expert opinion. J. Neurol. 2023, 270, 3675–3687. [Google Scholar] [CrossRef]
- Manti, F.; Caviglia, S.; Cazzorla, C.; Dicintio, A.; Pilotto, A.; Burlina, A.P. Expert opinion of an Italian working group on the assessment of cognitive, psychological, and neurological outcomes in pediatric, adolescent, and adult patients with phenylketonuria. Orphanet J. Rare Dis. 2022, 17, 443. [Google Scholar] [CrossRef] [PubMed]
- Gassió, R.; Artuch, R.; Vilaseca, M.A.; Fusté, E.; Boix, C.; Sans, A.; Campistol, J. Cognitive functions in classic phenylketonuria and mild hyperphenylalaninaemia: Experience in a paediatric population. Dev. Med. Child Neurol. 2005, 47, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Liemburg, G.B.; Huijbregts, S.C.J.; Rutsch, F.; Feldmann, R.; Jahja, R.; Weglage, J.; Och, U.; Burgerhof, J.G.M.; van Spronsen, F.J. Metabolic control during the neonatal period in phenylketonuria: Associations with childhood IQ. Pediatr. Res. 2022, 91, 874–878. [Google Scholar] [CrossRef]
- Waisbren, S.; Burton, B.K.; Feigenbaum, A.; Konczal, L.L.; Lilienstein, J.; McCandless, S.E.; Rowell, R.; Sanchez-Valle, A.; Whitehall, K.B.; Longo, N. Long-term preservation of intellectual functioning in sapropterin-treated infants and young children with phenylketonuria: A seven-year analysis. Mol. Genet. Metab. 2021, 132, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Paermentier, L.; Cano, A.; Chabrol, B.; Roy, A. Executive functions in preschool children with moderate hyperphenylalaninemia and phenylketonuria: A prospective study. Orphanet J. Rare Dis. 2023, 18, 175. [Google Scholar] [CrossRef] [PubMed]
- Gioia, G. A., Espy, K. A., & Isquith, P. K. Behavior rating inventory of executive function—preschool version. Psychological Assessment Resources, 2003. 2003.
- Liemburg, G.B.; Jahja, R.; van Spronsen, F.J.; de Sonneville, L.M.; van der Meere, J.J.; Bosch, A.M.; Hollak, C.E.; Rubio-Gozalbo, M.E.; Brouwers, M.C.; Hofstede, F.C.; et al. Is BRIEF a useful instrument in day-to-day care of patients with phenylketonuria? Mol. Genet. Metab. 2015, 114, 425–430. [Google Scholar] [CrossRef]
- Toplak, M.E.; West, R.F.; Stanovich, K.E. Practitioner review: Do performance-based measures and ratings of executive function assess the same construct? J. Child Psychol. Psychiatry 2013, 54, 131–143. [Google Scholar] [CrossRef]
- Doebel, S; Zelazo, P.D. A meta-analysis of the Dimensional Change Card Sort: Implications for developmental theories and the measurement of executive function in children. Dev. Rev. 2015, 38, 241–268. [CrossRef]
- Flynn, R.M.; Han, Y.C.; Kaat, A.J.; Mansolf, M.; Dworak, E.M.; Pila, S.; Yao, L.; Carlson, S.M.; Oakes, L.M.; Gershon, R.C.; et al. Development and validation of the NIH Baby Toolbox® Executive Function and Memory measures. Infant Behav. Dev. 2025, 80, 102118. [Google Scholar] [CrossRef]
- Garon, N.; Smith, I.M.; Bryson, S.E. A novel executive function battery for preschoolers: Sensitivity to age differences. Child Neuropsychol. 2014, 20, 713–736. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C. Finding your marbles: does preschoolers' strategic behavior predict later understanding of mind? Dev. Psychol. 1998, 34, 1326–1339. [Google Scholar] [CrossRef]
- Simpson, A.; Riggs, K.J.; Beck, S.R.; Gorniak, S.L.; Wu, Y.; Abbott, D.; Diamond, A. Refining the understanding of inhibitory processes: how response prepotency is created and overcome. Dev. Sci. 2012, 15, 62–73. [Google Scholar] [CrossRef]
- Gibb, R.; Coelho, L.; Van Rootselaar, N.A.; Halliwell, C.; MacKinnon, M. :, Plomp, I.; Gonzalez, C.L.R. Promoting executive function skills in preschoolers using a play-based program. Front. Psychol. 2021, 12, 720225. [Google Scholar] [CrossRef]
- Lehto, J.E.; Uusitalo, A.K. Rule detection in preschool-aged children. Eur. J. Dev. Psychol. 2006, 3, 209–221. [Google Scholar] [CrossRef]
- Kochanska, G.; Coy, K.C.; Murray, K.T. The development of self-regulation in the first four years of life. Child Dev. 2001, 72, 1091–1111. [Google Scholar] [CrossRef]
- van Adrichem, D.S.; Huijbregts, S.C.J.; van der Heijden, K.B.; van Goozen, S.H.M.; Swaab, H. The role of inhibitory control, attention and vocabulary in physical aggression trajectories from infancy to toddlerhood. Front. Psychol. 2020, 11, 1079. [Google Scholar] [CrossRef]
- Diamond, A.; Prevor, M.B.; Callender, G.; Druin, D.P. Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monogr. Soc. Res. Child Dev. 1997, 62, 1–208. [Google Scholar] [CrossRef] [PubMed]
- Arnold, G.L.; Kramer, B.M.; Kirby, R.S.; Plumeau, P.B.; Blakely, E.M.; Sanger Cregan, L.S.; Davidson, P.W. Factors affecting cognitive, motor, behavioral and executive functioning in children with phenylketonuria. Acta Paediatr. 1998, 87, 565–570. [Google Scholar] [CrossRef]
- Heineman, K.R.; Schendelaar, P.; Van den Heuvel, E.R.; Hadders-Algra, M. Motor development in infancy is related to cognitive function at 4 years of age. Dev. Med. Child Neurol. 2018, 60, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Valencia, E.; Torres-Sánchez, L.; López-Carrillo, L.; Rothenberg, S.J.; Schnaas, L. Early motor development and cognitive abilities among Mexican preschoolers. Child Neuropsychol. 2018, 24, 1015–1025. [Google Scholar] [CrossRef]
- Watkins, M.W.; Beaujean, A.A. Bifactor structure of the Wechsler Preschool and Primary Scale of Intelligence--Fourth Edition. Sch. Psychol. Q. 2014, 29, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, P.; Avulakunta, I.D. Bayley Scales Of Infant and Toddler Development. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. [PubMed]
- Muntau, A.C.; Burlina, A.; Eyskens, F.; Freisinger, P.; Leuzzi, V.; Sivri, H.S.; Gramer, G.; Pazdírková, R.; Cleary, M.; Lotz-Havla, A.S.; et al. Long-term efficacy and safety of sapropterin in patients who initiated sapropterin at <4 years of age with phenylketonuria: results of the 3-year extension of the SPARK open-label, multicentre, randomised phase IIIb trial. Orphanet J. Rare Dis. 2021, 16, 341. [Google Scholar] [CrossRef] [PubMed]
- van der Schot, L.W.; Doesburg, W.H.; Sengers, R.C. The phenylalanine response curve in relation to growth and mental development in the first year of life. Acta Paediatr. Suppl. 1994, 407, 68–69. [Google Scholar] [CrossRef]
- Vardy, E.R.L.C.; MacDonald, A.; Ford, S.; Hofman, D.L. Phenylketonuria, co-morbidity, and ageing: A review. J. Inherit. Metab. Dis. 2020, 43, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, T.S.; van Berkel, P.; Hammerschmidt, G.; Lhotáková, M.; Saludes, R.P. Requirements for a minimum standard of care for phenylketonuria: the patients' perspective. Orphanet J. Rare Dis. 2013, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.; Ranson, J.M.; Peetoom, K.; Lourida, I.; Tai, X.Y.; de Vugt, M.; Llewellyn, D.J.; Köhler, S. Risk Factors for Young-Onset Dementia in the UK Biobank. JAMA Neurol. 2024, 81, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Whitehall, K.B.; Rose, S.; Clague, G.E.; Ahring, K.K.; Bilder, D.A.; Harding, C.O.; Hermida, Á.; Inwood, A.; Longo, N.; Maillot, F.; et al. Systematic literature review of the somatic comorbidities experienced by adults with phenylketonuria. Orphanet J. Rare Dis. 2024, 19, 293. [Google Scholar] [CrossRef]
- Breit, M.; Scherrer, V.; Tucker-Drob, E.M.; Preckel, F. The stability of cognitive abilities: A meta-analytic review of longitudinal studies. Psychol. Bull. 2024, 150, 399–439. [Google Scholar] [CrossRef]
- Huh, J.; Arpawong, T.E.; Gruenewald, T.L.; Fisher, G.G.; Prescott, C.A.; Manly, J.J.; Seblova, D.; Walters, E.E.; Gatz, M. General cognitive ability in high school, attained education, occupational complexity, and dementia risk. Alzheimers Dement. 2024, 20, 2662–2669. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roqué-Figuls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2021, 7, CD010783. [Google Scholar] [CrossRef]
- Atri, A.; Dickerson, B.C.; Clevenger, C.; Karlawish, J.; Knopman, D.; Lin, P.J.; Norman, M.; Onyike, C.; Sano, M.; Scanland, S.; et al. The Alzheimer's Association clinical practice guideline for the diagnostic evaluation, testing, counseling, and disclosure of suspected Alzheimer's disease and related disorders (DETeCD-ADRD): Validated clinical assessment instruments. Alzheimers Dement. 2025, 21, e14335. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S. , Whitehead, V., Collin, I., Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Elamin, M.; Holloway, G.; Bak, T.H.; Pal, S. The utility of the Addenbrooke's Cognitive Examination Version Three in Early-Onset Dementia. Dement. Geriatr. Cogn. Disord. 2016, 41, 9–15. [Google Scholar] [CrossRef]
- Davis, D.H.; Creavin, S.T.; Yip, J.L.; Noel-Storr, A.H.; Brayne, C.; Cullum, S. Montreal Cognitive Assessment for the detection of dementia. Cochrane Database Syst. Rev. 2021, 7, CD010775. [Google Scholar] [CrossRef]
- Palombo, M.O.; Foran, A.M. Effectiveness of the Hayling and Brixton Tests for Detecting Dementia, Progressive Cognitive Decline, and Mild Cognitive Impairment in Middle to Older Aged Adults: A Systematic Review and Meta-analysis. Neuropsychol. Rev. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.; Alty, J.; Hinder, M.R.; St George, R.J. Falls in people with Alzheimer's disease: Exploring the role of inhibitory control. Neurosci. Biobehav. Rev. 2025, 175, 106228. [Google Scholar] [CrossRef]
- Faraone, S.V.; Khan, S.A. Candidate gene studies of attention-deficit/hyperactivity disorder. J. Clin. Psychiatry 2006, 67 Suppl 8, 13–20. [Google Scholar] [PubMed]
- Li, D.; Sham, P.C.; Owen, M.J.; He, L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet. 2006, 15, 2276–2284. [Google Scholar] [CrossRef]
- Stewart, A.; Blakely, R.D. The ins and outs of dopamine transporter gene manipulation: in vivo models of DAT dysfunction. Adv. Neurobiol. 2025, 46, 235–270. [Google Scholar] [CrossRef]
- Kuseyri Hübschmann, O.; Horvath, G.; Cortès-Saladelafont, E.; Yıldız, Y.; Mastrangelo, M.; Pons, R.; Friedman, J.; Mercimek-Andrews, S.; Wong, S.N.; Pearson, T.S.; et al. Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines. Nat. Commun. 2021, 12, 5529. [Google Scholar] [CrossRef] [PubMed]
- Barone, H.; Bliksrud, Y.T.; Elgen, I.B.; Szigetvari, P.D.; Kleppe, R.; Ghorbani, S.; Hansen, E.V.; Haavik, J. Tyrosinemia Type 1 and symptoms of ADHD: Biochemical mechanisms and implications for treatment and prognosis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2020, 183, 95–105. [Google Scholar] [CrossRef]
- Cannon Homaei, S.; Barone, H.; Kleppe, R.; Betari, N.; Reif, A.; Haavik, J. ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications. Neurosci. Biobehav. Rev. 2022, 132, 838–856. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, K.; van Ginkel, W.G.; Jahja, R.; Daly, A.; MacDonald, A.; Santra, S.; De Laet, C.; Goyens, P.J.; Vara, R.; Rahman, Y.; et al. Neurocognitive outcome and mental health in children with tyrosinemia type 1 and phenylketonuria. J. Inherit. Metab. Dis. 2022, 45, 952–962. [Google Scholar] [CrossRef]
- Anderson, P.J.; Leuzzi, V. White matter pathology in phenylketonuria. Mol. Genet. Metab. 2010, 99 Suppl 1, S3–S9. [Google Scholar] [CrossRef]
- Hawks, Z.; Hood, A.M.; Lerman-Sinkoff, D.B.; Shimony, J.S.; Rutlin, J.; Lagoni, D.; Grange, D.K.; White, D.A. White and gray matter brain development in children and young adults with phenylketonuria. Neuroimage Clin. 2019, 23, 101916. [Google Scholar] [CrossRef]
- Cutting, L.E.; Cooper, K.L.; Koth, C.W.; Mostofsky, S.H.; Kates, W.R.; Denckla, M.B.; Kaufmann, W.E. Megalencephaly in NF1: predominantly white matter contribution and mitigation by ADHD. Neurology 2002, 59, 1388–1394. [Google Scholar] [CrossRef]
- Koini, M.; Rombouts, S.A.R.B.; Veer, I.M.; Van Buchem, M.A.; Huijbregts, S.C.J. White matter microstructure of patients with neurofibromatosis type 1 and its relation to inhibitory control. Brain Imaging Behav. 2017, 11, 1731–1740. [Google Scholar] [CrossRef]
- Antenor-Dorsey, J.A.; Hershey, T.; Rutlin, J.; Shimony, J.S.; McKinstry, R.C.; Grange, D.K.; Christ, S.E.; White, D.A. White matter integrity and executive abilities in individuals with phenylketonuria. Mol. Genet. Metab. 2013, 109, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Manti, F.; Di Carlo, E.; Santagata, S.; Giovanniello, T.; Angeloni, A.; Pisani, F.; Pascucci, T.; Nardecchia, F.; Carducci, C.; Leuzzi, V. The clinical value of peripheral biogenic amine metabolites in early-treated phenylketonuria. Mol. Genet. Metab. 2025, 145, 109088. [Google Scholar] [CrossRef]
- Birks, J.S.; Harvey, R.J. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev. 2018, 6, CD001190. [Google Scholar] [CrossRef]
- Manyevitch, R.; Protas, M.; Scarpiello, S.; Deliso, M.; Bass, B.; Nanajian, A.; Chang, M.; Thompson, S.M.; Khoury, N.; Gonnella, R.; et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer's disease (AD): A meta-analysis of CSF markers. Curr. Alzheimer Res. 2018, 15, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Remy, P.; Doder, M.; Lees, A.; Turjanski, N.; Brooks, D. Depression in Parkinson's disease: Loss of dopamine and serotonin innervation in the limbic system. Brain 2005, 128, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Rolinski, M.; Fox, C.; Maidment, I.; McShane, R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson's disease dementia and cognitive impairment in Parkinson's disease. Cochrane Database Syst. Rev. 2012, 2012, CD006504. [Google Scholar] [CrossRef]
- Mariën, M.R.; Colpaert, F.C.; Rosenquist, A.C. Noradrenergic mechanisms in neurodegenerative diseases: A theory. Brain Res. Rev. 2004, 45, 38–78. [Google Scholar] [CrossRef]
- Pilotto, A.; Galli, A.; Sala, A.; Caminiti, S.P.; Presotto, L.; Liguori, C.; Mercuri, N.B.; Premi, E.; Garibotto, V.; Frisoni, G.; Chiaravalloti, A.; Schillaci, O.; D'Amelio, M.; Paghera, B.; Lucchini, S.; Bertagna, F.; Perani, D.; Padovani, A. Dopaminergic deficits along the spectrum of Alzheimer's disease. Mol. Psychiatry 2025, 30, 3069–3076. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.S.; Kuwabara, H.; Yan, H.; Nassery, N.; Yoon, M.; Kamath, V.; Kraut, M.; Gould, N.F.; Savonenko, A.; Coughlin, J.M.; et al. Serotonin degeneration and amyloid-β deposition in mild cognitive impairment: Relationship to cognitive deficits. J. Alzheimers Dis. 2023, 96, 215–227. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Albin, R.L. White matter lesions in Parkinson disease. Nat. Rev. Neurol. 2011, 7, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Festa, L.K.; Grinspan, J.B.; Jordan-Sciutto, K.L. White matter injury across neurodegenerative disease. Trends Neurosci. 2024, 47, 47–57. [Google Scholar] [CrossRef]
- Sexton, C.E.; Kalu, U.G.; Filippini, N.; Mackay, C.E.; Ebmeier, K.P. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2011, 32, 2322.e5–2322.e18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Q.; Chen, Q.Z.; Yang, Y.; Zang, C.X.; Ma, J.W.; Wang, J.R.; Dong, Y.R.; Zhou, N.; Yang, X.; Li, F.F.; et al. White matter lesions contribute to motor and non-motor disorders in Parkinson's disease: A critical review. Geroscience 2025, 47, 591–609. [Google Scholar] [CrossRef]
- Murayama, R.; Cai, Y.; Nakamura, H.; Hashimoto, K. Demyelination in psychiatric and neurological disorders: Mechanisms, clinical impact, and novel therapeutic strategies. Neurosci. Biobehav. Rev. 2025, 174, 106209. [Google Scholar] [CrossRef]
- van Wegberg, A.M.J.; van der Weerd, J.C.; Engelke, U.F.H.; Coene, K.L.M.; Jahja, R.; Bakker, S.J.L.; Huijbregts, S.C.J.; Wevers, R.A.; Heiner-Fokkema, M.R.; van Spronsen, F.J. The clinical relevance of novel biomarkers as outcome parameter in adults with phenylketonuria. J. Inherit. Metab. Dis. 2024, 47, 624–635. [Google Scholar] [CrossRef]
- Yano, S.; Moseley, K.; Fu, X.; Azen, C. Evaluation of tetrahydrobiopterin therapy with large neutral amino acid supplementation in phenylketonuria: Effects on potential peripheral biomarkers, melatonin and dopamine, for brain monoamine neurotransmitters. PLoS One 2016, 11, e0160892. [Google Scholar] [CrossRef]
- Zaunseder, E.; Mütze, U.; Okun, J.G.; Hoffmann, G.F.; Kölker, S.; Heuveline, V.; Thiele, I. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab. 2024, 36, 1882–1897.e7. [Google Scholar] [CrossRef] [PubMed]
- Thiele, A.G.; Gausche, R.; Lindenberg, C.; Beger, C.; Arelin, M.; Rohde, C.; Mütze, U.; Weigel, J.F.; Mohnike, K.; Baerwald, C.; et al. Growth and final height among children with phenylketonuria. Pediatrics 2017, 140, e20170015. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; Rocha, J.C.; MacDonald, A. A 3-year longitudinal prospective review examining the dietary profile and contribution made by special low protein foods to energy and macronutrient intake in children with phenylketonuria. Nutrients 2020, 12, 3153. [Google Scholar] [CrossRef]
- Trefz, F.; Frauendienst-Egger, G.; Dienel, G.; Cannet, C.; Schmidt-Mader, B.; Haas, D.; Blau, N.; Himmelreich, N.; Spraul, M.; Freisinger, P.; et al. Does hyperphenylalaninemia induce brain glucose hypometabolism? Cerebral spinal fluid findings in treated adult phenylketonuric patients. Mol. Genet. Metab. 2024, 142, 108464. [Google Scholar] [CrossRef]
- Parolisi, S.; Montanari, C.; Borghi, E.; Cazzorla, C.; Zuvadelli, J.; Tosi, M.; Barone, R.; Bensi, G.; Bonfanti, C.; Dionisi Vici, C.; et al. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in phenylketonuria. Pharmacol. Res. 2023, 197, 106952. [Google Scholar] [CrossRef]
- Cannet, C.; Pilotto, A.; Rocha, J.C.; Schäfer, H.; Spraul, M.; Berg, D.; Nawroth, P.; Kasperk, C.; Gramer, G.; Haas, D.; et al. Lower plasma cholesterol, LDL-cholesterol and LDL-lipoprotein subclasses in adult phenylketonuria (PKU) patients compared to healthy controls: results of NMR metabolomics investigation. Orphanet J. Rare Dis. 2020, 15, 61. [Google Scholar] [CrossRef]
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Montoya Parra, G.A.; Singh, R.H.; Cetinyurek-Yavuz, A.; Kuhn, M.; MacDonald, A. Status of nutrients important in brain function in phenylketonuria: A systematic review and meta-analysis. Orphanet J. Rare Dis. 2018, 13, 101. [Google Scholar] [CrossRef]
- Couce, M.L.; de Castro, M.J.; de Lamas, C.; Leis, R. Effects of LC-PUFA supplementation in patients with phenylketonuria: A systematic review of controlled trials. Nutrients 2019, 11, 1537. [Google Scholar] [CrossRef]
- Koletzko, B.; Beblo, S.; Demmelmair, H.; Hanebutt, F.L. Omega-3 LC-PUFA supply and neurological outcomes in children with phenylketonuria (PKU). J. Pediatr. Gastroenterol. Nutr. 2009, 48 Suppl 1, S2–S7. [Google Scholar] [CrossRef]
- Scala, I.; Riccio, M.P.; Marino, M.; Bravaccio, C.; Parenti, G.; Strisciuglio, P. Large neutral amino acids (LNAAs) supplementation improves neuropsychological performances in adult patients with phenylketonuria. Nutrients 2020, 12, 1092. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Stroup, B.M.; Clayton, M.K.; Murali, S.G.; Rice, G.M.; Rohr, F.; Levy, H.L. Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2016, 104, 334–345. [Google Scholar] [CrossRef]
- Dacks, P.A.; Shineman, D.W.; Fillit, H.M. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease. J. Nutr. Health Aging 2013, 17, 240–251. [Google Scholar] [CrossRef]
- Mora, I.; Arola, L.; Caimari, A.; Escoté, X.; Puiggròs, F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int. J. Mol. Sci. 2022, 23, 3472. [Google Scholar] [CrossRef]
- Dobrowolski, S.F.; Phua, Y.L.; Vockley, J.; Goetzman, E.; Blair, H.C. Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity. Mol. Genet. Metab. 2022, 136, 111–117. [Google Scholar] [CrossRef]
- He, Q.; Bennett, A.N.; Zhang, C.; Zhang, J.Y.; Tong, S.; Chan, K.H.K. Nutritional interventions for preventing cognitive decline in patients with mild cognitive impairment and Alzheimer's disease: A comprehensive network meta-analysis and Mendelian Randomization study. Clin. Nutr. ESPEN 2025, 67, 555–566. [Google Scholar] [CrossRef]
- Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative Stress in Parkinson's Disease: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11, 236. [Google Scholar] [CrossRef]
- Stevenson, J.; Buitelaar, J.; Cortese, S.; Ferrin, M.; Konofal, E.; Lecendreux, M.; Simonoff, E.; Wong, I.C.; Sonuga-Barke, E. Research review: the role of diet in the treatment of attention-deficit/hyperactivity disorder—an appraisal of the evidence on efficacy and recommendations on the design of future studies. J. Child Psychol. Psychiatry 2014, 55, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Nagao, K. Cognition and nutrition: the role of dietary protein and amino acids in cognitive health. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Carbone, M.T.; Borghi, E.; Ottaviano, E.; Burlina, A.; Biasucci, G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020, 12, 3319. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
