Preprint
Article

This version is not peer-reviewed.

Volatile Profile of the Baccharis Genus: A Narrative Review

Submitted:

20 November 2025

Posted:

20 November 2025

You are already at the latest version

Abstract

Plants synthesize a wide range of secondary metabolites, including phenolic compounds and terpenoids, which play key ecological roles and have relevant agro-industrial applications. The genus Baccharis, belonging to the family Asteraceae, is highly abundant in South America, particularly in Brazil, and has long been used in traditional medicine, supporting its neotropical origin. Given the growing interest in the species that compose this genus and, in their metabolites, the present study aimed to compile a structured database to support the identification of volatile compounds occurring in Baccharis species. A total of 158 volatile compounds were identified across 15 species, most of which belong to the subgenus Baccharis. Eleven compounds were observed that may serve as chemotaxonomic markers for the genus. The species most extensively studied over the past decade were B. dracunculifolia and B. trimera. Altogether, these findings highlight the metabolic potential of the Baccharis genus and point to new prospects for pharmaceutical and agro-industrial applications.

Keywords: 
;  ;  ;  

1. Introduction

Plants synthesize a broad range of compounds during their biochemical processes, among which secondary metabolites, particularly phenolic compounds and terpenoids, stand out. Within the terpenoid class, monoterpenes and sesquiterpenes are volatile substances associated with diverse ecological functions, especially the attraction of pollinators and natural enemies, in addition to their relevance for agro-industrial applications [1,2].
The genus Baccharis is one of the 196 genera of the family Asteraceae occurring in Brazil and is widely recognized in traditional communities for its medicinal properties. Although distributed across all American continents, approximately 90% of its species occur naturally in South America, a concentration that supports the idea that its center of origin lies within the Neotropical region [3,4,5].
Species of Baccharis are generally described as perennial shrubs ranging from 50 cm to 4 m in height, characterized by leaves and stems covered with a tufted indumentum composed of trichomes with adjacent basal cells, and by their dioecious nature. They exhibit substantial morphological diversity, with stems typically lacking a xylopodium, winged or striated branches, and leaves ranging from scale-like to fully developed, showing varied venation patterns and dentate margins. Their inflorescences are capitulescences of multiple forms, with homogamous and sexually distinct capitula (staminate or pistillate), reflecting broad ecological adaptability [6].
These species are frequently cited for their distinctive phytochemical composition, including phenolic compounds and volatile constituents, which confer a range of bioactive properties, such as antifungal [7], anticariogenic [8], antibacterial [9], antidiabetic [10], antitumoral [11], antioxidant, anti-inflammatory [12], and hepatoprotective effects [13]. These bioactivities have been widely exploited through the incorporation of oils extracted from these plants into food, pharmaceutical, and cosmetic formulations [14,15,16,17].
Considering the above, the main objective of this study was to compile a database of volatile compounds occurring in species of the genus Baccharis, with the purpose of supporting the identification of these metabolites.

2. Materials and Methods

This narrative review aimed to answer the following guiding question: “What is the profile of volatile compounds reported in species of the genus Baccharis?”. Based on this inquiry, search strategies were defined for the databases ScienceDirect, PubMed, Periódicos CAPES, Web of Science, and Scopus.
The search was conducted using the descriptors “Chemical profile,” “Volatile compounds,” and “Baccharis,” combined with the logical operator “AND,” according to the structure of each platform. A 10-year time window was adopted, covering publications from 2015 to 2025. Another selection criterion concerned the analytical technique: only studies employing gas chromatography coupled with mass spectrometry (GC–MS) for compound identification were included.
To group species of the genus Baccharis, a dendrogram was constructed based on interspecific similarity derived from their volatile compound profiles. The analysis employed hierarchical clustering using the Jaccard dissimilarity coefficient, with binary data indicating the presence or absence of the 162 volatile compounds surveyed. Dendrograms were generated using the unweighted pair group method with arithmetic mean (UPGMA). All analyses were performed using the vegan package implemented in the R programming environment [18].

3. Results and Discussion

3.1. Search and Selection

Study selection was carried out through screening of titles and abstracts, considering their relevance to the research question. A total of 94 studies were identified; after removing duplicates (13) and excluding non-relevant works (69), 12 studies were included, all focused on the chemical profiles and volatile compounds of Baccharis species. Table 1 presents the number of studies retrieved from each database.
Fifteen species of the genus Baccharis were identified across the selected studies, distributed among three distinct subgenera: Oblongifolia, Molina, and Baccharis. B. oblongifolia belongs to the subgenus Oblongifolia, whereas B. anomala and B. salicifolia are classified within the subgenus Molina. The remaining species, B. dracunculifolia, B. milleflora, B. trimera, B. tridentata, B. uncinella, B. dentata, B. calvescens, B. axillaris, B. articulata, B. mesoneura, B. myriocephala, and B. retusa, belong to the subgenus Baccharis, which exhibited the highest species diversity in this survey.
The species with the greatest number of publications addressing volatile compound profiles was B. dracunculifolia, with six studies. Following this, B. trimera and B. uncinella each appeared in three studies, and B. milleflora was represented in two.
Among the studies focused on B. dracunculifolia, five were published after 2019, indicating a growing interest in the bioactive properties of its metabolites and in its close association with green propolis.

3.2. Volatile Compounds

A total of 158 volatile compounds were identified as constituents of the volatile profiles reported for the surveyed species. The monoterpenes p-cymene, myrcene, β-E-ocimene, α-pinene, β-pinene, sabinene, γ-terpinene, and α-thujene, along with the sesquiterpenes copaene, α-humulene, and γ-muurolene, were detected in 75% of the species analyzed. This recurrent composition suggests that these volatiles serve as strong indicators of the presence of plant parts and/or extracts belonging to the genus (Figure 1).
The occurrence of compounds such as α-pinene, β-pinene, α-thujene, sabinene, and α-humulene in the chemical profiles of plants belonging to the class Magnoliopsida, which includes families such as Asteraceae, Myrtaceae, and Lamiaceae [19,20], suggests a group of metabolites associated with conserved metabolic patterns maintained throughout evolutionary processes.
Within the subgenus Oblongifolia, 17 volatile compounds were identified, with a clear predominance of monoterpenes such as α-pinene, sabinene, myrcene, γ-terpinene, and α-terpineol (Table 2). No compound was found to be exclusive to this species when compared with the other species included in this review [21].
Within the subgenus Molina, represented by B. anomala and B. salicifolia, 34 volatile compounds were identified. Although both species belong to the same subgenus, where a certain degree of chemical similarity would be expected, only α-pinene and β-pinene were shared between them. This low overlap may be attributed to several factors, including chromatographic conditions, extraction methodologies, and the season or phenological stage at which plant material was collected.
Among the compounds reported for species of the Molina subgenus, sesquiterpenes were particularly diverse, followed by monoterpenes, especially in B. anomala (Table 3) [21,22].
The most extensively studied subgenus in terms of volatile compounds was the subgenus Baccharis, comprising 12 of the surveyed species and totaling 148 compounds, with a predominance of terpenoids—particularly monoterpenes and sesquiterpenes (Table 4). Among the compounds identified, β-pinene, α-thujene, sabinene, α-humulene, and γ-muurolene were detected in all species of this group.
In B. calvescens, guaiol was the only compound reported as exclusive among the species of the subgenus [21]. B. trimera exhibited exclusivity for β-isophorone, carquejol acetate, and trans-pinocarvyl acetate [21]. B. mesoneura showed the singular presence of salviol-4(14)-en-1-one, whereas B. milleflora was distinguished by the exclusive occurrence of α-acorenol [21,23].
In B. uncinella, the following compounds were identified as exclusive constituents: α-felandrene, (Z)-β-ocimene, nopinone, pinocarvone, safranal, (E)-sabinol, (Z)-carveol, (E)-tagetone, (E)-β-ionone, cadalene, (E)-calamen-10-ol, iso-italicene epoxide, and cubene [23,24,25].
In B. dracunculifolia, the exclusive constituents identified were acetophenone, δ-isopulegol, dihydrotagetone, methyl eugenol, α-curcumene, α-elemene, α-bourbonene, ylangene, δ-elemene, dauca-5,8-diene, isobicyclogermacrenal, ledene oxide, cedrene-13-en-8-ol, germacran-8-4-ol, cabreuva oxide B, β-copaen-4α-ol, khusimol, trans-nerolidol, junenol, α-muurolol, β-oplopenone, phytol, and heptacosane. The high diversity of exclusive constituents reported for B. dracunculifolia can be explained by the large number of studies focusing on this species [25,26,27,28,29,30,31].
In B. retusa, the exclusive constituents identified were 2-hexenal, hexanal, (E)-3-hexen-1-ol, 1-hexanol, n-cymene, 3-carene, α-ocimene, β-damascenone, β-eudesmene, and β-cadinene [32]. In B. dentata, the exclusive compounds were n-nonanal, carvone, α-campholenal, (E)-pinocarveol, (E)-verbenol, geranial, α-calacorene, (E)-muurola-4(14),5-diene, and δ-amorphene [23].

3.3. Cluster Analysis

All volatile compounds identified in the selected studies were subjected to hierarchical clustering analysis (UPGMA) to investigate patterns of similarity among Baccharis species (Figure 2). The dendrogram was constructed using the Jaccard dissimilarity coefficient, based on the presence or absence of 159 volatile compounds. The clustering results revealed the formation of at least five distinct chemical profiles among the evaluated species.
The first group consisted exclusively of B. salicifolia, indicating a unique chemical profile. The second cluster brought together B. dentata, B. dracunculifolia, and B. uncinella. The third group consisted of B. retusa, which exhibited a volatile composition distinct from the remaining species. The fourth cluster encompassed a larger set of species, B. calvescens, B. axillaris, B. articulata, B. oblongifolia, B. myriocephala, B. mesoneura, and B. anomala, suggesting close chemical similarity among them. Finally, the fifth group included B. tridentata, B. milleflora, and B. trimera, which displayed similar volatile profiles.
Although organisms classified as closely related often exhibit similar chemical characteristics due to shared evolutionary ancestry, the available data are not sufficiently comprehensive to conclusively confirm taxonomic proximity. Nonetheless, the findings suggest a probable evolutionary relationship among the groups observed [33].

5. Conclusions

Given the number of studies identified, species belonging to the subgenus Baccharis, particularly B. dracunculifolia and B. trimera, stand out in comparison with the others surveyed. The presence of α-pinene, β-pinene, α-thujene, sabinene, myrcene, γ-terpinene, copaene, α-humulene, γ-muurolene, p-cymene, and β-E-ocimene in their chemical profiles may serve as potential biomarkers indicating the contribution of Baccharis species to the composition of plant-derived products. Although these volatiles constitute strong indicators, broader and more comprehensive studies are needed to refine and validate these patterns, given the considerable diversity of species classified within the genus.
In the composition of volatile profiles, monoterpenes and sesquiterpenes are the phytochemical classes most frequently reported, with B. dracunculifolia exhibiting the highest number of these compounds in its volatile profile.

Author Contributions

Conceptualization, L.S.G. and J.O-F.M..; methodology, L.S.G, T.C., A.L.S.V, J.P.S.M., C.I.C E.J.A.C, A.C.C.F.F.P, H.A.T and J.O-F.M.; software, L.S.G., J.P.S.M., C.I.C. and A.H.O.J.; validation, L.S.G., T.C., A.L.S.V, E.J.A.C, A.C.C.F.F.P, H.A.T and J.O-F.M..; data curation, L.S.G. and J.O.-F.M.; writing—review and editing, L.S.G, T.C., A.L.S.V, E.J.A.C, A.C.C.F.F.P, H.A.T and J.O.-F.M.; visualization, A.H.d.O.J. and J.O.-F.M.; supervision, J.O-F. M .; project administration, J.O-F. M. All authors have read and agreed to the published version of the manuscript.

Funding

Coordination for the Improvement of Higher Education Personnel (CAPES) / code 001), the National Council for Scientific and Technological Development (CNPq) (research productivity grant 132217/2023-6, 307787/2022-2 and 404432/2024-7), Minas Gerais State Research Support Foundation (FAPEMIG)- Finance Code APQ-04336-23, APQ-05883-24, PPE-00094-23.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data supporting the findings of this study are available from the corresponding author upon request.

Acknowledgments

The authors would like to thank the Universidade Federal de São João del-Rei, the Minas Gerais State Research Support Foundation (FAPEMIG), the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and the Teaching, Research and Extension Group in Chemistry and Pharmacognosy (GEPEQF).

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MF Molecular Formula
MM Molar Mass
BM Baccharis milleflora
BME Baccharis mesoneura
BR Baccharis retusa
BAR Baccharis articulata
BAX Baccharis axillaris
BMY Baccharis myriophoella
BT Baccharis trimera
BA Baccharis anomala
BS Baccharis salicifolia
BD Baccharis dentata
BO Baccharis oblongifolia
BC Baccharis calvescens
BDR Baccharis dracunculifolia
BU Baccharis uncinella
BTR Baccharis tridentata

References

  1. Pinto-zevallos, D. M.; Martins, C. B. C. Pellegtino, A. C.; & Zarbin, P. H. G. (2013). Compostos orgânicos voláteis na defesa induzida das plantas contra insetos herbívoros. Química Nova, 36 (9), 1395–1405. [CrossRef]
  2. Picazo-Aragonés, J., Terrab, A., & Balao, F. (2020). Plant volatile organic compounds evolution: Transcriptional regulation, epigenetics and polyploidy. International Journal of Molecular Sciences, 21(23), 8956. [CrossRef]
  3. Budel, J. M., Duarte, M. R., Santos, C. A. M., Farago, P. V., & Matzenbacher, N. I. (2005). O progresso da pesquisa sobre o gênero Baccharis, Asteraceae: I - Estudos botânicos. Revista Brasileira de Farmacognosia, 15(3), 268–271. [CrossRef]
  4. Müller, J. (2006). Systematics of Baccharis (Compositae-Astereae) in Bolivia, including an overview of the genus. Systematic Botany Monographs, 76, 1–341.
  5. Hattori, E. K. O., & Nakajima, J. N. (2008). A família Asteraceae na estação de pesquisa e desenvolvimento ambiental galheiro, Perdizes, Minas Gerais, Brasil. Rodriguésia, 59(4), 687–749.
  6. Heiden, G., Baumgratz, J. F. A., & Esteves, R. L. (2012). Baccharis subgen. Molina (Asteraceae) no estado do Rio de Janeiro, Brasil. Rodriguésia, 63(3), 649–687. [CrossRef]
  7. Xavier, V. B., Minteguiaga, M., Umpiérrez, N., Vargas, R. M. F., Dellacassa, E., & Cassel, E. (2016). Olfactometry evaluation and antimicrobial analysis of essential oils from Baccharis dentata (Vell.) G.M. Barroso and Baccharis uncinella DC. Journal of Essential Oil Research, 29(2), 137–144. [CrossRef]
  8. Aires, C. P., Sassaki, G. L., Santana-Filho, A. P., Spadaro, A. C. C., & Cury, J. A. (2016). Baccharis dracunculifolia-based mouthrinse alters the exopolysaccharide structure in cariogenic biofilms. International Journal of Biological Macromolecules, 84, 301–307. [CrossRef]
  9. De Araújo-Neto, J. B., Da Silva, M. M. C., Lucas Dos Santos, A. T., De Souza, A. B., Oliveira-Tintino, C. D. D. M., Da Silva, L. E., ... & Tintino, S. R. (2023). Terpenic profile of the essential oil of Symphyopappus cuneatus (DC.) Sch.Bip. Ex Baker and its effects on antibiotic resistance in vitro. South African Journal of Botany, 157, 355–359. [CrossRef]
  10. Hocayen, P. D. A., Grassiolli, S., Leite, N. C., Pochapski, M. T., Pereira, R. A., Da Silva, L. A., & Malfatti, C. R. (2016). Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats. Pharmaceutical Biology, 54(7), 1263–1271.
  11. Lucas, A. M., Bento, A. F. M. L., Vargas, R. M. F., Scheffel, T. B., Rockenbach, L., Diz, F. M., ... & Cassel, E. (2021). Use of supercritical CO₂ to obtain Baccharis uncinella extracts with antioxidant and antitumor activity. Journal of CO₂ Utilization, 49, 101563. [CrossRef]
  12. Brandenburg, M. M., Rocha, F. G., Pawloski, P. L., Soley, B. D. S., Rockenbach, A., Scharf, D. R., ... & Otuki, M. F. (2020). Baccharis dracunculifolia (Asteraceae) essential oil displays anti-inflammatory activity in models of skin inflammation. Journal of Ethnopharmacology, 259, 112840. [CrossRef]
  13. Nogueira, N. P. A., Reis, P. A., Laranja, G. A. T., Pinto, A. C., Aiub, C. A. F., Felzenszwalb, I., ... & Coelho, M. G. P. (2011). In vitro and in vivo toxicological evaluation of extract and fractions from Baccharis trimera with anti-inflammatory activity. Journal of Ethnopharmacology, 138(2), 513–522.
  14. Ferreira, P. de A. (2012). Desenvolvimento de forma farmacêutica sólida à base de Baccharis trimera (Less.) DC. para o tratamento da artrite reumatóide.
  15. Casagrande, M., Zanela, J., Júnior, A. W., Busso, C., Wouk, J., Iurckevicz, G., & Malfatti, C. R. M. (2018). Influence of time, temperature and solvent on the extraction of bioactive compounds of Baccharis dracunculifolia: In vitro antioxidant activity, antimicrobial potential, and phenolic compound quantification. Industrial Crops and Products, 125, 207–219.
  16. Silva, M. C. D., Silva, L. A. D., Malfatti, C. R. M., & Soares, K. C. N. (2022). Propriedades antidiabéticas de cerveja enriquecida com Baccharis dracunculifolia. Research, Society and Development, 11(11), e262111133720. [CrossRef]
  17. Ming, L. C. (2022). Baccharis: De filho de Júpiter a vassoura e carqueja: uma visão botânica e etnobotânica histórica e os problemas de produtos comercializados. Scientia Naturalis, 4(1), 264–286. [CrossRef]
  18. R Core Team (2021). R: A Language and Environment for Statistical Computing.
  19. Bandeira, J. M., Barbosa, F. F., Barbosa, L. M. P., Rodrigues, I. C. S., Bacarin, M. A., Peters, J. A., & Braga, E. J. B. (2011). Composição do óleo essencial de quatro espécies do gênero Plectranthus. Revista Brasileira de Plantas Medicinais, 13(2), 157–164. [CrossRef]
  20. Do Amaral, W., Deschamps, C., Bizzo, H. R., Pinto, M. A. S., Da Silva, L. E., & Biasi, L. A. (2016). Essential oil yield and composition of native species of the Myrtaceae family from "Campos Gerais" of the Atlantic Forest in Parana State.
  21. Trombin-Souza, M., Amaral, W., Pascoalino, J. A. L., Oliveira, R. A., Bizzo, H. R., & Deschamps, C. (2017). Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. Journal of Essential Oil Research, 29(5), 400–406. [CrossRef]
  22. Nieves-Silva, E., & Romero-López, A. A. (2019). Chemical profile of the volatiles of Baccharis salicifolia (Asteraceae) and interaction with Macrodactylus nigripes (Coleoptera: Melolonthidae). Acta Agronómica, 68(3), 222–227.
  23. Minteguiaga, M., Umpiérrez, N., Xavier, V., Lucas, A., Mondin, C., Fariña, L., ... & Dellacassa, E. (2015). Recent findings in the chemistry of odorants from four Baccharis species and their impact as chemical markers. Chemistry & Biodiversity, 12(9), 1339–1348.
  24. Zimmermann, R. C., de Carvalho Aragao, C. E., de Araújo, P. J. P., Benatto, A., Chaaban, A., Martins, C. E. N., ... & Zawadneak, M. A. (2021). Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Protection, 144, 105575.
  25. de Assis Lage, T. C., Montanari, R. M., Fernandes, S. A., de Oliveira Monteiro, C. M., Senra, T. D. O. S., Zeringota, V., ... & Daemon, E. (2015). Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia De Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Experimental Parasitology, 148, 24–29. [CrossRef]
  26. Cazella, L. N., Glamoclija, J., Soković, M., Gonçalves, J. E., Linde, G. A., Colauto, N. B., & Gazim, Z. C. (2019). Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Frontiers in Plant Science, 10, 27.
  27. Pedrotti, C., da Silva Ribeiro, R. T., & Schwambach, J. (2019). Control of postharvest fungal rots in grapes through the use of Baccharis trimera and Baccharis dracunculifolia essential oils. Crop Protection, 125, 104912.
  28. Bonin, E., Carvalho, V. M., Avila, V. D., Aparecida Dos Santos, N. C., Benassi-Zanqueta, É., Contreras Lancheros, C. A., ... & Nunes Do Prado, I. (2020). Baccharis dracunculifolia: Chemical constituents, cytotoxicity and antimicrobial activity. LWT, 120, 108920. [CrossRef]
  29. Tomazzoli, M. M., Amaral, W. D., Cipriano, R. R., Tomasi, J. D. C., Gomes, E. N., Ferriani, A. P., ... & Deschamps, C. (2021). Chemical composition and antioxidant activity of essential oils from populations of Baccharis dracunculifolia DC. in southern Brazil. Brazilian Archives of Biology and Technology, 64, e21190253. [CrossRef]
  30. Rigotti, M., Facanali, R., Haber, L. L., Vieira, M. A. R., Isobe, M. T. C., Cavallari, M. M., ... & Marques, M. O. M. (2023). Chemical and genetic diversity of Baccharis dracunculifolia DC. (Asteraceae) from the Cerrado biome. Biochemical Systematics and Ecology, 111, 104735.
  31. Cruzeiro, R. R. P., Davies, N. W., Obara, M. T., Silveira, D., Gomes-Copeland, K. K. P., De Castro Nizio, D. A., & Fagg, C. W. (2024). Activity of essential oils from Brazilian Cerrado against Aedes aegypti (Diptera: Culicidae) larvae. South African Journal of Botany, 172, 619–626. [CrossRef]
  32. Von Poser, G. L. (2016). A quimiotaxonomia na sistemática dos seres vivos. In C. M. O. Simões, E. P. Schenkel, J. C. P. Mello, L. A. Mentz, & P. R. Petrovick (Orgs.), Farmacognosia: do produto natural ao medicamento (pp. 23–28). Artmed.
Figure 1. Volatile compounds frequently reported as constituents of the chemical profile of Baccharis species.
Figure 1. Volatile compounds frequently reported as constituents of the chemical profile of Baccharis species.
Preprints 186018 g001
Figure 2. Dendrogram obtained through hierarchical clustering analysis of the volatile extract composition of the surveyed Baccharis species.
Figure 2. Dendrogram obtained through hierarchical clustering analysis of the volatile extract composition of the surveyed Baccharis species.
Preprints 186018 g002
Table 1. Search strategies used for each database.
Table 1. Search strategies used for each database.
Database Search Strategy Articles
Science Direct "Chemical profile" AND "Volatile compounds" AND "Baccharis" 76
PubMed "Chemical profile" AND "Volatile compounds" AND "Baccharis" 4
CAPES "Chemical profile" AND "Volatile compounds" AND "Baccharis" 3
Web of Science "Chemical profile" AND "Volatile compounds" AND "Baccharis" 5
Scopus "Chemical profile" AND "Volatile compounds" AND "Baccharis" 6
Table 2. Volatile compounds reported in species of the subgenus Oblongifolia.
Table 2. Volatile compounds reported in species of the subgenus Oblongifolia.
Compound Formula Molar Mass (g mol-1) Baccharis oblongifolia
p-Cymene C₁₀H₁₄ 134.22 X
Myrcene C₁₀H₁₆ 136.23 X
β-E-Ocimene C₁₀H₁₆ 136.23 X
α-Pinene C₁₀H₁₆ 136.23 X
β-Pinene C₁₀H₁₆ 136.23 X
Sabinene C₁₀H₁₆ 136.23 X
γ-Terpinene C₁₀H₁₆ 136.23 X
α-Terpineol C₁₀H₁₈O 154.25 X
α-Thujene C₁₀H₁₆ 136.23 X
Terpinen-4-ol C₁₀H₁₈O 154.25 X
δ-Cadinene C₁₅H₂₄ 204.35 X
Copaene C₁₅H₂₄ 204.35 X
β-Elemene C₁₅H₂₄ 204.35 X
Germacrene D C₁₅H₂₄ 204.35 X
cis-β-Guaiene C₁₅H₂₄ 204.35 X
α-Humulene C₁₅H₂₄ 204.35 X
γ-Muurolene C₁₅H₂₄ 204.35 X
1 Volatile compounds reported for Baccharis oblongifolia (BO), classified within the subgenus Oblongifolia, including molecular formula (MF) and molar mass (MM). The symbol “X” indicates the presence of the compound in the species, whereas “–” denotes its absence.
Table 3. Volatile compounds reported in species of the subgenus Molina.
Table 3. Volatile compounds reported in species of the subgenus Molina.
Compound Formula Molar Mass (g mol-1) B. salicifolia B. anomala
Styrene C₈H₈ 104.15 - X
Phenylmethanol C₇H₈O 108.14 - X
Ethylidenecyclohexane C₈H₁₄ 110.2 - X
2-Phenylpropene C₉H₁₀ 118.18 - X
1,2,3-Trimethylbenzene C₉H₁₂ 120.19 - X
1,2,4-Trimethylbenzene C₉H₁₂ 120.19 - X
1,3,5-Trimethylbenzene C₉H₁₂ 120.19 - X
Cumene C₉H₁₂ 120.19 - X
p-Cymene C₁₀H₁₄ 134.22 X -
Myrcene C₁₀H₁₆ 136.23 X -
Sabinene C₁₀H₁₆ 136.23 X -
α-Pinene C₁₀H₁₆ 136.23 X X
α-Thujene C₁₀H₁₆ 136.23 X -
β-E-Ocimene C₁₀H₁₆ 136.23 X -
β-Pinene C₁₀H₁₆ 136.23 X X
γ-Terpinene C₁₀H₁₆ 136.23 X -
1,1,4-Trimethylidane C₁₀H₁₆ 160.25 - X
1,1,5-Trimethylidane C₁₂H₁₆ 160.25 - X
1,1,6-Trimethylidane C₁₂H₁₆ 160.25 - X
Cyclohexylbenzene C₁₂H₁₆ 160.25 - X
Trimethylidane C₁₂H₁₆ 160.25 - X
trans-Calamenene C₁₅H₂₂ 202.33 - X
α-Humulene C₁₅H₂₄ 204.35 X -
β-Elemene C₁₅H₂₄ 204.35 X -
Bicyclogermacrene C₁₅H₂₄ 204.35 X -
Copaene C₁₅H₂₄ 204.35 X -
Germacrene D C₁₅H₂₄ 204.35 X -
Modheph-2-ene C₁₅H₂₄ 204.35 X -
β-Cubebene C₁₅H₂₄ 204.35 X -
δ-Cadinene C₁₅H₂₄ 204.35 X -
1-Epi-cubenol C₁₅H₂₆O 222.37 X -
Viridiflorol C₁₅H₂₆O 222.37 X -
α-Cadinol C₁₅H₂₆O 222.37 X -
α-Muurolol C₁₅H₂₆O 222.37 X -
1 Volatile compounds reported in Baccharis salicifolia (BS) and Baccharis anomala (BA), both classified within the subgenus Molina, accompanied by their molecular formula (MF) and molar mass (MM). The symbol “X” indicates the presence of the compound in the respective species, whereas “–” denotes its absence.
Table 4. Volatile compounds reported in species of the subgenus Molina.
Table 4. Volatile compounds reported in species of the subgenus Molina.
Compound MF MM
(g mol-1)
BM BT BMY BTR BD BAX BAR BME BR BDR BC BU
2-Hexenal C₆H₁₀O 98.14 - - - - - - - - X - - -
Hexanal C₆H₁₂O 100.16 - - - - - - - - X - - -
(E)-3-Hexen-1-ol C₆H₁₂O 100.16 - - - - - - - - X - - -
1-Hexanol C₆H₁₄O 102.17 - - - - - - - - X - - -
Acetophenone C₈H₈O 120.15 - - - - - - - - - X - -
p-Cymenene C₁₀H₁₂ 132.2 - - - - X - - - - - - X
p-Methylacetophenone C₉H₁₀O 134.17 - - - - X - - - - - - X
m-Cymene* C₁₀H₁₄ 134.22 - - - - - - - - X - - -
p-Cymene C₁₀H₁₄ 134.22 X X X - X X X X - X X X
δ-3-Carene C₁₀H₁₆ 136.23 - - - - - - - - X - - -
α-Ocimene C₁₀H₁₆ 136.23 - - - - - - - - X - - -
α-Fenchene (if intended; otherwise α-Felandrene kept as submitted) C₁₀H₁₆ 136.23 - - - - - - - - - - - X
(Z)-β-Ocimene C₁₀H₁₆ 136.23 - - - - - - - - - - - X
cis-β-Ocimene C₁₀H₁₆ 136.23 - X - - - - - - - X - -
Terpinolene C₁₀H₁₆ 136.23 - - - - X - - - X X - -
α-Terpinene C₁₀H₁₆ 136.23 - - - - X - - - - X - X
β-Felandrene C₁₀H₁₆ 136.23 X X - X - - - - - - - X
Camphene C₁₀H₁₆ 136.23 - X - X X - - - X - - X
α-Pinene C₁₀H₁₆ 136.23 X X X X - X X X X X X X
Myrcene C₁₀H₁₆ 136.23 X X X - X X X X X X X X
γ-Terpinene C₁₀H₁₆ 136.23 X X X - X X X X X X X X
β-E-Ocimene C₁₀H₁₆ 136.23 X X X X X X X X - X X X
β-Pinene C₁₀H₁₆ 136.23 X X X X X X X X X X X X
α-Thujene C₁₀H₁₆ 136.23 X X X X X X X X X X X X
Sabinene C₁₀H₁₆ 136.23 X X X X X X X X X X X X
β-Isophorone C₉H₁₄O 138.21 - X - - - - - - - - - -
δ-Isopulegol C₉H₁₄O 138.21 - - - - - - - - - X - -
Nopinone C₉H₁₄O 138.21 - - - - - - - - - - - X
Cryptone C₉H₁₄O 138.21 - X - - X - - - - - - X
n-Nonanal C₉H₁₈O 142.24 - - - - X - - - - - - -
Cuminaldehyde C₁₀H₁₂O 148.2 - - - - X - - - - - - X
Pinocarvone C₁₀H₁₄O 150.22 - - - - - - - - - - - X
Safranal C₁₀H₁₄O 150.22 - - - - - - - - - - - X
Carvone C₁₀H₁₄O 150.22 - - - - X - - - - - - -
Myrtenal C₁₀H₁₄O 150.22 - - - - X - - - - X - -
Verbenone C₁₀H₁₄O 150.22 - - - - X - - - - - - X
α-Campholenal C₁₀H₁₆O 152.23 - - - - X - - - - - - -
(E)-Pinocarveol C₁₀H₁₆O 152.23 - - - - X - - - - - - -
(E)-Sabinol C₁₀H₁₆O 152.23 - - - - - - - - - - - X
(E)-Verbenol C₁₀H₁₆O 152.23 - - - - X - - - - - - -
(Z)-Carveol C₁₀H₁₆O 152.23 - - - - - - - - - - - X
Geranial C₁₀H₁₆O 152.23 - - - - X - - - - - - -
(E)-Tagetone C₁₀H₁₆O 152.23 - - - - - - - - - - - X
Myrtenol C₁₀H₁₆O 152.23 - - - - X - - - - X - -
Camphor C₁₀H₁₆O 152.23 - X - - X - - - - - - -
p-Menthadienol C₁₀H₁₆O 152.23 - - - - X - - - - - - X
(E)-Carveol C₁₀H₁₆O 152.23 - - - - X - - - - - - X
Perillyl alcohol C₁₀H₁₆O 152.23 - - - - X - - - - - - X
Dihydrotagetone C₁₀H₁₈O 154.25 - - - - - - - - - X - -
Citronellal C₁₀H₁₈O 154.25 - - - - X - - - - - - X
Borneol C₁₀H₁₈O 154.25 - - - - X - - - - - - X
(Z)-Piperitol C₁₀H₁₈O 154.25 - - - - X - - - - - - X
Geraniol C₁₀H₁₈O 154.25 - - - - X - - - - - - X
Linalool C₁₀H₁₈O 154.25 - - - - X - - - X X - -
Terpinen-4-ol C₁₀H₁₈O 154.25 X - - - - - X X - X X X
α-Terpineol C₁₀H₁₈O 154.25 X - - - X - X X X X X X
Methyl eugenol C₁₁H₁₄O₂ 178.23 - - - - - - - - - X - -
β-Damascenone C₁₃H₁₈O 190.28 - - - - - - - - X - - -
Carquejol acetate C₁₂H₁₅O₂ 191.25 - X - - - - - - - - - -
(E)-β-Ionone C₁₃H₂₀O 192.3 - - - - - - - - - - - X
trans-Pinocarvyl acetate C₁₂H₁₈O₂ 194.27 - X - - - - - - - - - -
Bornyl acetate C₁₂H₁₈O₂ 196.29 - X - X - - - - - - - -
Cadalene C₁₅H₁₈ 198.3 - - - - - - - - - - - X
α-Calacorene C₁₅H₂₀ 200.32 - - - - X - - - - - - -
α-Curcumene C₁₅H₂₂ 202.33 - - - - - - - - - X - -
trans-Calamenene C₁₅H₂₂ 202.33 - - X - - - X - - - - -
ar-Curcumene C₁₅H₂₂ 202.33 X - - - - - - - - - - X
β-Eudesmene C₁₅H₂₄ 204.35 - - - - - - - - X - - -
β-Cadinene C₁₅H₂₄ 204.35 - - - - - - - - X - - -
α-Elemene C₁₅H₂₄ 204.35 - - - - - - - - - X - -
α-Bourbonene C₁₅H₂₄ 204.35 - - - - - - - - - X - -
Ylangene C₁₅H₂₄ 204.35 - - - - - - - - - X - -
δ-Elemene C₁₅H₂₄ 204.35 - - - - - - - - - X - -
Dauca-5,8-diene C₁₅H₂₄ 204.35 - - - - - - - - - X - -
(E)-Muurola-4(14),5-diene C₁₅H₂₄ 204.35 - - - - X - - - - - - -
δ-Amorphene C₁₅H₂₄ 204.35 - - - - X - - - - - - -
Aromadendrene C₁₅H₂₄ 204.35 - - - - - - - - X X - -
α-Gurjunene C₁₅H₂₄ 204.35 - - - - - - - - - X - X
δ-Amorphene (duplicate preserved) C₁₅H₂₄ 204.35 X - - - - - - - - - - X
α-Longipinene C₁₅H₂₄ 204.35 - - - - X - - - - - - X
2-Epi-β-Funebrene C₁₅H₂₄ 204.35 - - - - X - - - - - - X
β-Gurjunene C₁₅H₂₄ 204.35 - - - - X - - - - - - X
α-(E)-Bergamotene C₁₅H₂₄ 204.35 - - - - X - - - - - - X
(E)-β-Farnesene C₁₅H₂₄ 204.35 - - - - X - - - - - - X
Germacrene A C₁₅H₂₄ 204.35 - - - - X - - - - - - X
Allo-aromadendrene C₁₅H₂₄ 204.35 - - - - - - - - X X - -
α-Muurolene C₁₅H₂₄ 204.35 - - - - - - - - X X - X
β-Copaene C₁₅H₂₄ 204.35 - - - - X - - - - X - X
α-Cubebene C₁₅H₂₄ 204.35 - - - - X - - - - X - X
trans-α-Bergamotene C₁₅H₂₄ 204.35 X - - X - - - - - - - X
(E,E)-α-Farnesene C₁₅H₂₄ 204.35 X - - X - - - - - - - X
β-Cubebene C₁₅H₂₄ 204.35 - - - - X - - X - - - X
(E)-Cadina-1(6)-4-diene C₁₅H₂₄ 204.35 - - - - X - - - - X - X
β-Guaiene C₁₅H₂₄ 204.35 - - - - X - - - X X - X
Ledene C₁₅H₂₄ 204.35 - - X - X - - - X - - X
γ-Cadinene C₁₅H₂₄ 204.35 - - - - X - - - X X - X
α-Amorphene C₁₅H₂₄ 204.35 X X - X - - - - - - - X
cis-β-Guaiene C₁₅H₂₄ 204.35 - - - - - X X - - - X X
β-Elemene C₁₅H₂₄ 204.35 - X - - X X X - X X X X
Germacrene D C₁₅H₂₄ 204.35 - - - - X X X X X X X X
Bicyclogermacrene C₁₅H₂₄ 204.35 X X - X X - - X X X - X
δ-Cadinene C₁₅H₂₄ 204.35 X X - X X X - X - X - X
Copaene C₁₅H₂₄ 204.35 - - X - X X X X X X X X
α-Humulene C₁₅H₂₄ 204.35 X X X X X X X X X X X X
γ-Muurolene C₁₅H₂₄ 204.35 X X X X X X X X X X X X
Tetradecanal C₁₄H₂₈O 212.37 - X - - - - - - - - - X
Isobicyclogermacrenal C₁₅H₂₂O 218.33 - - - - - - - - - X - -
(E)-Calamen-10-ol C₁₅H₂₂O 218.33 - - - - - - - - - - - X
Ledene oxide C₁₅H₂₂O 220.35 - - - - - - - - - X - -
Isospathulenol C₁₅H₂₂O 220.35 - - - - - - - - X - - -
Cedrene-13-en-8-ol C₁₅H₂₂O 220.35 - - - - - - - - - X - -
Germacran-δ-4-ol C₁₅H₂₂O 220.35 - - - - - - - - - X - -
Cabreuva oxide B C₁₅H₂₂O 220.35 - - - - - - - - - X - -
β-Copaen-4α-ol C₁₅H₂₂O 220.35 - - - - - - - - - X - -
Khusimol C₁₅H₂₂O 220.35 - - - - - - - - - X - -
Salviol-4(14)-en-1-one C₁₅H₂₂O 220.35 - - - - - - - X - - - -
Iso-italicene epoxide C₁₅H₂₂O 220.35 - - - - - - - - - - - X
Eudesma-4(15),7-dien-1β-ol C₁₅H₂₂O 220.35 X - - - - - - - - - - X
Aromadendrene oxide C₁₅H₂₂O 220.35 X X - - - - - - - - - -
Spathulenol C₁₅H₂₂O 220.35 - X - - - - - - - X - -
Humulene epoxide II C₁₅H₂₂O 220.35 X - - - - - - X - - X X
Germacra-4(15),5,10(14)-trien-1α-ol C₁₅H₂₂O 220.35 X X - - - - - - - X - X
Isospathulenol (duplicate preserved) C₁₅H₂₂O 220.35 X X X - - - X - - - X X
Caryophyllene oxide C₁₅H₂₂O 220.35 X X X X - X - X - X X X
trans-Nerolidol C₁₅H₂₆O 222.37 - - - - - - - - - X - -
Junenol C₁₅H₂₆O 222.37 - - - - - - - - - X - -
α-Muurolol C₁₅H₂₆O 222.37 - - - - - - - - - X - -
Guaiol C₁₅H₂₆O 222.37 - - - - - - - - - - X -
α-Acorenol C₁₅H₂₆O 222.37 X - - - - - - - - - - -
Cubenol C₁₅H₂₆O 222.37 - - - - - - - - - - - X
Rosifoliol C₁₅H₂₆O 222.37 - - X - - - X - - - - X
Bulnesol C₁₅H₂₆O 222.37 X - - - X - - - - - - X
α-Epi-cadinol C₁₅H₂₆O 222.37 - - X - - - X - X X - -
t-Cadinol C₁₅H₂₆O 222.37 X X - X - - - - - - - X
Cubeban-11-ol C₁₅H₂₆O 222.37 - - X - - - - - - X X X
β-Selinene C₁₅H₂₆O 222.37 - X - X X X - - - - X -
Palustrol C₁₅H₂₆O 222.37 X X - - - - X - - X - X
Ledol C₁₅H₂₆O 222.37 X X - - X - - - - X - X
1-Epi-cubenol C₁₅H₂₆O 222.37 X - X - - - - - - X X X
β-Eudesmol C₁₅H₂₆O 222.37 X X X - - X - - - - X X
Globulol C₁₅H₂₆O 222.37 - X - - X - X X X X - X
Viridiflorol C₁₅H₂₆O 222.37 X X X - - X X - X X X X
α-Cadinol C₁₅H₂₆O 222.37 X X X - - X X X - X X X
Epi-α-Muurolol C₁₅H₂₆O 222.37 X X X - - X X X - X X X
Murolan-3,9(11)-diene-10-peroxide C₁₅H₂₄O₂ 236.35 - - - - X - - - - X - X
β-Oplopenone C₁₅H₂₆O₂ 238.37 - - - - - - - - - X - -
Neophytadiene C₂₀H₃₈ 278.5 X X - - - - - - - - - -
Phytol C₂₀H₄₀O 296.5 - - - - - - - - - X - -
Heptacosane C₂₇H₅₆ 380.7 - - - - - - - - - X - -
1 Volatile compounds reported in Baccharis milleflora (BM), Baccharis mesoneura (BME), Baccharis retusa (BR), Baccharis articulata (BAR), Baccharis axillaris (BAX), Baccharis myriophoella (BMY), Baccharis trimera (BT), Baccharis anomala (BA), Baccharis salicifolia (BS), Baccharis dentata (BD), Baccharis oblongifolia (BO), Baccharis calvescens (BC), Baccharis dracunculifolia (BDR), Baccharis uncinella (BU), and Baccharis tridentata (BTR), all classified within the subgenus Baccharis, together with their respective molecular formulas (MF) and molar masses (MM). The molecular formula (MF) represents the chemical composition of each compound, and the molar mass (MM) is expressed in grams per mole (g/mol). The symbol “X” indicates the presence of the compound in the respective species, whereas “–” denotes its absence.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated