Submitted:
10 November 2025
Posted:
11 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Study Area
Experimental Design and Data Sources
Estimate of Leaf Area Index (LAI)
Estimate Gross Primary Productivity (GPP)
2.5. Calculation of Solar-Induced Chlorophyll Fluorescence (SIF)
3. Results
Temporal and Spatial Dynamics of Canopy Properties
Estimation of GPP
Carbon Sequestration in Mangrove Ecosystems
Calculation of Solar Induced Chlorophyll Fluorescence
4. Discussion
Dynamics of Vegetation Index and Mangrove Leaf Area
4.2. The LUE Simulated GPP for Carbon Sequestration
4.3. Photosynthetic Activity and Carbon Sequestration in Mangrove Ecosystems
4.4. Methodological Advances, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D.M. Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests. Forests 2022, 13, 149. [Google Scholar] [CrossRef]
- Choudhary, B.; Dhar, V.; Pawase, A.S. Blue Carbon and the Role of Mangroves in Carbon Sequestration: Its Mechanisms, Estimation, Human Impacts and Conservation Strategies for Economic Incentives. Journal of Sea Research 2024, 199, 102504. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nature Geosci 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Hussain, N.; Islam, Md.N. Hot Spot (Gi∗) Model for Forest Vulnerability Assessment: A Remote Sensing-Based Geo-Statistical Investigation of the Sundarbans Mangrove Forest, Bangladesh. Model. Earth Syst. Environ. 2020, 6, 2141–2151. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, S.; Islam, I.; Xu, L.; Ding, S. Dynamics of Plantation Forest Development and Ecosystem Carbon Storage Change in Coastal Bangladesh. Ecological Indicators 2021, 130, 107954. [Google Scholar] [CrossRef]
- Andrieu, J.; Lombard, F.; Fall, A.; Thior, M.; Ba, B.D.; Dieme, B.E.A. Botanical Field-Study and Remote Sensing to Describe Mangrove Resilience in the Saloum Delta (Senegal) after 30 Years of Degradation Narrative. Forest Ecology and Management 2020, 461, 117963. [Google Scholar] [CrossRef]
- Lassalle, G.; De Souza Filho, C.R. Tracking Canopy Gaps in Mangroves Remotely Using Deep Learning. Remote Sens Ecol Conserv 2022, 8, 890–903. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors 2017, 2017, 1–17. [Google Scholar] [CrossRef]
- Gao, S.; Yan, K.; Liu, J.; Pu, J.; Zou, D.; Qi, J.; Mu, X.; Yan, G. Assessment of Remote-Sensed Vegetation Indices for Estimating Forest Chlorophyll Concentration. Ecological Indicators 2024, 162, 112001. [Google Scholar] [CrossRef]
- Zhang, Z.; Xin, Q.; Li, W. Machine Learning-Based Modeling of Vegetation Leaf Area Index and Gross Primary Productivity Across North America and Comparison with a Process-Based Model. J Adv Model Earth Syst 2021, 13, e2021MS002802. [Google Scholar] [CrossRef]
- Dechant, B.; Ryu, Y.; Badgley, G.; Zeng, Y.; Berry, J.A.; Zhang, Y.; Goulas, Y.; Li, Z.; Zhang, Q.; Kang, M.; et al. Canopy Structure Explains the Relationship between Photosynthesis and Sun-Induced Chlorophyll Fluorescence in Crops. Remote Sensing of Environment 2020, 241, 111733. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, Y.; Zhang, Y.; Lu, X.; Liu, Z.; Weng, Q. Potential of Sun-Induced Chlorophyll Fluorescence for Indicating Mangrove Canopy Photosynthesis. JGR Biogeosciences 2021, 126, e2020JG006159. [Google Scholar] [CrossRef]
- Yang, S.; Yang, J.; Shi, S.; Song, S.; Zhang, Y.; Luo, Y.; Du, L. An Exploration of Solar-Induced Chlorophyll Fluorescence (SIF) Factors Simulated by SCOPE for Capturing GPP across Vegetation Types. Ecological Modelling 2022, 472, 110079. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and Mapping of Above-Ground Biomass of Mangrove Forests and Their Replacement Land Uses in the Philippines Using Sentinel Imagery. ISPRS Journal of Photogrammetry and Remote Sensing 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Tran, T.V.; Reef, R.; Zhu, X. A Review of Spectral Indices for Mangrove Remote Sensing. Remote Sensing 2022, 14, 4868. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Adame, M.F.; Cormier, N.; Taillardat, P.; Iram, N.; Rovai, A.; Sloey, T.M.; Yando, E.S.; Blanco-Libreros, J.F.; Arnaud, M.; Jennerjahn, T.; et al. Deconstructing the Mangrove Carbon Cycle: Gains, Transformation, and Losses. Ecosphere 2024, 15, e4806. [Google Scholar] [CrossRef]
- Barr, J.G.; Engel, V.; Fuentes, J.D.; Fuller, D.O.; Kwon, H. Modeling Light Use Efficiency in a Subtropical Mangrove Forest Equipped with CO2 Eddy Covariance. Biogeosciences 2013, 10, 2145–2158. [Google Scholar] [CrossRef]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A Systematic Review on Advancements in Remote Sensing for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical Environments. Remote Sensing 2023, 15, 3926. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The Cost-Effectiveness of Remote Sensing for Tropical Coastal Resources Assessment and Management. Journal of Environmental Management 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A Review of Remote Sensing for Mangrove Forests: 1956–2018. Remote Sensing of Environment 2019, 231, 111223. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sensing 2021, 13, 2565. [Google Scholar] [CrossRef]
- Casal, G.; Trégarot, E.; Cornet, C.C.; McCarthy, T.; Van Der Geest, M. A Cost-Effective Method to Map Mangrove Forest Extent, Composition, and Condition in Small Islands Based on Sentinel-2 Data: Implications for Management. Ecological Indicators 2024, 159, 111696. [Google Scholar] [CrossRef]
- Hussain, N.; Arain, M.A.; Wang, S.; Parker, W.C.; Elliott, K.A. Evaluating the Effectiveness of Different Variable Retention Harvesting Treatments on Forest Carbon Uptake Using Remote Sensing. Remote Sensing Applications: Society and Environment 2024, 33, 101124. [Google Scholar] [CrossRef]
- Hussain, N.; Gonsamo, A.; Wang, S.; Arain, M.A. Assessment of Spongy Moth Infestation Impacts on Forest Productivity and Carbon Loss Using the Sentinel-2 Satellite Remote Sensing and Eddy Covariance Flux Data. Ecol Process 2024, 13, 37. [Google Scholar] [CrossRef]
- Moorthy, P. Photosynthetic Efficiency in Rhizophoracean Mangroves with Reference to Compartmentalization of Photosynthetic Pigments. RBT 1969, 21–25. [Google Scholar] [CrossRef]
- Cobacho, S.P.; Janssen, S.A.R.; Brekelmans, M.A.C.P.; Van De Leemput, I.A.; Holmgren, M.; Christianen, M.J.A. High Temperature and Eutrophication Alter Biomass Allocation of Black Mangrove (Avicennia Germinans L.) Seedlings. Marine Environmental Research 2024, 193, 106291. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.C.; Hikosaka, K.; Hirotsu, N.; Makino, A.; Hirose, T. The Excess Light Energy That Is Neither Utilized in Photosynthesis nor Dissipated by Photoprotective Mechanisms Determines the Rate of Photoinactivation in Photosystem II. Plant and Cell Physiology 2003, 44, 318–325. [Google Scholar] [CrossRef]
- Endo, T.; Uebayashi, N.; Ishida, S.; Ikeuchi, M.; Sato, F. Light Energy Allocation at PSII under Field Light Conditions: How Much Energy Is Lost in NPQ-Associated Dissipation? Plant Physiology and Biochemistry 2014, 81, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Dutta, G. From Photosynthesis to Biosensing: Chlorophyll Proves to Be a Versatile Molecule. Sensors International 2020, 1, 100058. [Google Scholar] [CrossRef]
- Lal, M.A.; Bhatla, S.C. Photosynthesis. In Plant Physiology, Development and Metabolism; Springer Nature Singapore: Singapore, 2023; pp. 107–154. ISBN 978-981-99-5735-4. [Google Scholar]
- Leister, D. Enhancing the Light Reactions of Photosynthesis: Strategies, Controversies, and Perspectives. Molecular Plant 2023, 16, 4–22. [Google Scholar] [CrossRef]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; Van Der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote Sensing of Solar-Induced Chlorophyll Fluorescence (SIF) in Vegetation: 50 Years of Progress. Remote Sensing of Environment 2019, 231, 111177. [Google Scholar] [CrossRef]
- Sembada, A.A.; Faizal, A.; Sulistyawati, E. Photosynthesis Efficiency as Key Factor in Decision-Making for Forest Design and Redesign: A Systematic Literature Review. Ecological Frontiers 2024, 44, 1128–1139. [Google Scholar] [CrossRef]
- Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Köhler, P.; Magney, T. Overview of Solar-Induced Chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, Cross-Mission Comparison, and Global Monitoring for GPP. Remote Sensing of Environment 2018, 209, 808–823. [Google Scholar] [CrossRef]
- Bacour, C.; Maignan, F.; Peylin, P.; MacBean, N.; Bastrikov, V.; Joiner, J.; Köhler, P.; Guanter, L.; Frankenberg, C. Differences Between OCO-2 and GOME-2 SIF Products from a Model-Data Fusion Perspective. JGR Biogeosciences 2019, 124, 3143–3157. [Google Scholar] [CrossRef]
- Gou, R.; Buchmann, N.; Chi, J.; Luo, Y.; Mo, L.; Shekhar, A.; Feigenwinter, I.; Hörtnagl, L.; Lu, W.; Cui, X.; et al. Temporal Variations of Carbon and Water Fluxes in a Subtropical Mangrove Forest: Insights from a Decade-Long Eddy Covariance Measurement. Agricultural and Forest Meteorology 2023, 343, 109764. [Google Scholar] [CrossRef]
- Ahmed, S.; Kamruzzaman, Md.; Rahman, Md.S.; Sakib, N.; Azad, Md.S.; Dey, T. Stand Structure and Carbon Storage of a Young Mangrove Plantation Forest in Coastal Area of Bangladesh: The Promise of a Natural Solution. Nature-Based Solutions 2022, 2, 100025. [Google Scholar] [CrossRef]
- Ali, Y.; Rahman, M.M. Quantifying Forest Stocking Changes in Sundarbans Mangrove Using Remote Sensing Data. Science of Remote Sensing 2025, 11, 100181. [Google Scholar] [CrossRef]
- Hussain, N.; Khanam, R.; Khan, E. Two and Half Century’s Changes of World Largest Mangrove Forest: A Geo-Informatics Based Study on Sundarbans Mangrove Forest, Bangladesh, India. MESE 2017, 03, 419–423. [Google Scholar] [CrossRef]
- Ellison, J.C. Mangrove Retreat with Rising Sea-Level, Bermuda. Estuarine, Coastal and Shelf Science 1993, 37, 75–87. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring Mangrove Forest Dynamics of the Sundarbans in Bangladesh and India Using Multi-Temporal Satellite Data from 1973 to 2000. Estuarine, Coastal and Shelf Science 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Brammer, H. Bangladesh’s Dynamic Coastal Regions and Sea-Level Rise. Climate Risk Management 2014, 1, 51–62. [Google Scholar] [CrossRef]
- Hussain, N.; Khan, E. Coastline Dynamics and Raising Landform: A Geo-Informatics Based Study on the Bay of Bengal, Bangladesh. IJG 2018, 50, 41. [Google Scholar] [CrossRef]
- Islam, MD.T. Vegetation Changes of Sundarbans Based on Landsat Imagery Analysis between 1975 and 2006. Landscape & Environment 2014, 8, 1–9. [Google Scholar]
- Piazza, M. M., Govil, D. K., & Altrell, D. Brief on National Forest Inventory; Bangladesh, Forestry Department Food and Agriculture Organization of the United Nations.
- Mukul, S.A.; Alamgir, M.; Sohel, Md.S.I.; Pert, P.L.; Herbohn, J.; Turton, S.M.; Khan, Md.S.I.; Munim, S.A.; Reza, A.H.M.A.; Laurance, W.F. Combined Effects of Climate Change and Sea-Level Rise Project Dramatic Habitat Loss of the Globally Endangered Bengal Tiger in the Bangladesh Sundarbans. Science of The Total Environment 2019, 663, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Jacquemoud, S.; Baret, F. PROSPECT: A Model of Leaf Optical Properties Spectra. Remote Sensing of Environment 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model Separating Photosynthetic Pigments. Remote Sensing of Environment 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Verhoef, W. Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: The SAIL Model. Remote Sensing of Environment 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Xu, X.Q.; Lu, J.S.; Zhang, N.; Yang, T.C.; He, J.Y.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Inversion of Rice Canopy Chlorophyll Content and Leaf Area Index Based on Coupling of Radiative Transfer and Bayesian Network Models. ISPRS Journal of Photogrammetry and Remote Sensing 2019, 150, 185–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000–2016. Sci Data 2017, 4, 170165. [Google Scholar] [CrossRef]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.-E.; et al. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence. Proc. Natl. Acad. Sci. U.S.A. 2014, 111. [Google Scholar] [CrossRef]
- Samanta, S.; Hazra, S.; Mondal, P.P.; Chanda, A.; Giri, S.; French, J.R.; Nicholls, R.J. Assessment and Attribution of Mangrove Forest Changes in the Indian Sundarbans from 2000 to 2020. Remote Sensing 2021, 13, 4957. [Google Scholar] [CrossRef]
- Wilson, T.B.; Meyers, T.P. Determining Vegetation Indices from Solar and Photosynthetically Active Radiation Fluxes. Agricultural and Forest Meteorology 2007, 144, 160–179. [Google Scholar] [CrossRef]
- Alatorre, L.C.; Sánchez-Carrillo, S.; Miramontes-Beltrán, S.; Medina, R.J.; Torres-Olave, M.E.; Bravo, L.C.; Wiebe, L.C.; Granados, A.; Adams, D.K.; Sánchez, E.; et al. Temporal Changes of NDVI for Qualitative Environmental Assessment of Mangroves: Shrimp Farming Impact on the Health Decline of the Arid Mangroves in the Gulf of California (1990–2010). Journal of Arid Environments 2016, 125, 98–109. [Google Scholar] [CrossRef]
- Gnanamoorthy, P.; Selvam, V.; Deb Burman, P.K.; Chakraborty, S.; Karipot, A.; Nagarajan, R.; Ramasubramanian, R.; Song, Q.; Zhang, Y.; Grace, J. Seasonal Variations of Net Ecosystem (CO2) Exchange in the Indian Tropical Mangrove Forest of Pichavaram. Estuarine, Coastal and Shelf Science 2020, 243, 106828. [Google Scholar] [CrossRef]
- Zheng, Y.; Takeuchi, W. Estimating Mangrove Forest Gross Primary Production by Quantifying Environmental Stressors in the Coastal Area. Sci Rep 2022, 12, 2238. [Google Scholar] [CrossRef] [PubMed]
- 2023.
- European Commission, Joint Research Centre, Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E.,; Monforti-Ferrario, F., Becker, W.E., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S., Melo, J., Oom, D.,; Branco, A., San-Miguel, J., Manca, G., Pisoni, E., Vignati, E. and Pekar, F., GHG Emissions of All World Countries.; Publications Office: LU, 2024.
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A Critical Review of Methods, Principles and Progress for Estimating the Gross Primary Productivity of Terrestrial Ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Qian, L.; Yu, X.; Zhang, Z.; Wu, L.; Fan, J.; Xiang, Y.; Chen, J.; Liu, X. Assessing and Improving the High Uncertainty of Global Gross Primary Productivity Products Based on Deep Learning under Extreme Climatic Conditions. Science of The Total Environment 2024, 957, 177344. [Google Scholar] [CrossRef] [PubMed]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands – A Review. Science of The Total Environment 2018, 615, 857–874. [Google Scholar] [CrossRef]
- Tang, Y.; Li, T.; Yang, X.; Chao, Q.; Wang, C.; Lai, D.Y.F.; Liu, J.; Zhu, X.; Zhao, X.; Fan, X.; et al. Mango-GPP: A Process-Based Model for Simulating Gross Primary Productivity of Mangrove Ecosystems. J Adv Model Earth Syst 2023, 15, e2023MS003714. [Google Scholar] [CrossRef]








| Model | Input Parameters | Symbol | Unit | Range | Fixed value |
|---|---|---|---|---|---|
| PROSPECT | Leaf structure | N | dimensionless | 1.5 – 3.0 | 1.5 |
| Chlorophyll content | Cab | µg.cm-2 | 10 - 80 | 40 | |
| Carotenoid content | Car | µg.cm-2 | – | 10 | |
| Brown pigment | Cbrown | arbitrary units | – | 0 | |
| Equivalent water thickness | Cw | cm | – | 0.01 | |
| Dry matter content | Cm | g.cm-2 | – | 0.009 | |
| SAIL | Leaf inclination distribution function | LIDF | shape | spherical | spherical |
| LIDFa | slope | -1 to 1 | -0.35 | ||
| LIDFb | Kind of distortion | -1 to 1 | -0.15 | ||
| Leaf Area Index | LAI | m2/m2 | 0 - 8 | ||
| Hot spot parameter | hspot | m/m | 0.03 – 0.1 | 0.01 | |
| Solar zenith angle | tts | (°) | 20 -70 | 30 | |
| View zenith angle | tto | (°) | 0 - 30 | 10 | |
| Relative azimuth angle | psi | (°) | 0 |
| Year | Total CO2 Emissions of Bangladesh (Mt CO2 eq) | Total Carbon Sequestration by Sundarbans (Mt CO2 eq) | Emissions Absorbed by Sundarbans |
|---|---|---|---|
| 2019 | 213.19 | 54.65 | 25.63% |
| 2020 | 269.03 | 65.06 | 24.18% |
| 2021 | 276.8 | 57.61 | 20.81% |
| 2022 | 278.49 | 42.76 | 15.35% |
| 2023 | 281.38 | 49.17 | 17.47% |
| Year | NDVI | LAI (m2/m2) | GPP (gCm-2d-1) | SIF (mWm-2 sr-1 nm-1) |
|---|---|---|---|---|
| 2019 | 0.506 | 2.272 | 6.588 | 0.817 |
| 2020 | 0.548 | 2.587 | 7.841 | 0.939 |
| 2021 | 0.513 | 2.354 | 6.945 | 0.867 |
| 2022 | 0.459 | 2.119 | 5.154 | 0.582 |
| 2023 | 0.433 | 2.152 | 5.927 | 0.663 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
