Submitted:
07 November 2025
Posted:
11 November 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Research Method
2.1. Process of Researcher-AI System Interaction
3. The Ahuric Framework: Overview and Basic Concepts
- where:
- Ω ∈ Sᵏ⁻¹ = {ω ∈ ℝᵏ: ‖ω‖₂ = 1}, ∇ₛ₋₁(Ω) = 0 (Optimized Principal Kernel)
- 𝔄 = × × (Composite State Space with Projection Mappings)
- Φ = {Φ_av, Φ_χ, ...} : 𝔄 × ℝ₊ → 𝔽 (Organizing Fields)
- Λ : 𝔄 × ℝ₊ → ℝᵈ (Dynamic Memory System)
- G_law : (Ω, Θ) ↦ _eff (Effective Law Generation Engine)
- G: (Ω, _eff, Θ) ↦ F (Dynamics Generation Engine)
- Θ = {θ_i} (Control Parameters)
- ẋ = F(x, Φ, Λ; Θ), x ∈ 𝔄
- ∂_t Φ = G_Φ(x, Φ, Λ; Θ)
- ∂_t Λ = G_Λ(x, Φ, Λ; Θ)
3.1. Ahura (Transcendental Kernel) - Layer 0
3.1.1. Conceptual Definition
3.1.2. Mathematical Representation
3.1.3. Ahuric Code
3.2.3. Layered Structure
3.2.4. Combined Norm of Ahuric Space:
3.2.5. Mother Principles in This Layer
3.2.6. Subsidiary Principles (From Combining Two Principles)
3.3. Ahuric Field (Dynamics Engine) - Layer 2
3.3.1. Conceptual Definition
3.3.2. Mathematical Representation
3.3.3. Field Structure
3.3.4. Macro-Theorems (From Combining Three or More Principles)
3.3.5. Field Dynamics
3.4. Derived Laws - Layer 3
3.4.1. Definition
3.4.2. Specific Derived Laws
3.5. Inferential Hierarchy of Ahura
3.5.1. Layer 0: Ahura (Principial Kernel)
3.5.2. Layer 1: Ahuric Space (Composite State Space)
3.5.3. Layer 2: Ahuric Field (Organizing Field)
3.5.4. Layer 3: Derived Laws (Testable Laws)
3.6. Glossary of Symbols and Terms
3.7. Fundamental Self-Evident Component (Ahuric Components) in Ahuric Architecture - Version 4
3.7.1. Fundamental Unified Principle
3.7.2. Principle of Combined Conservation
3.7.3. Principle of Local Dynamics
3.7.4. Principle of Hierarchical Compatibility
3.7.5. Composite State Space
3.8. Natural Examples
3.9. Common Characteristics of These 5 Self-Evident Components
3.9.1. Non-Derivability
3.9.2. Foundational Nature
3.9.3. Completeness
3.10. Final Summary
3.11. Types of Components Generated from Layer Interactions (Emphasizing Layers 0, 1, 3, 3 and Self-Evident Components)
3.12. Ahuric Cycles
3.13. Derived Principles (Π_sub)
3.14. Theorems ()
3.15. Derived Laws ()
3.16. The Potential of Self-Evident Principles in Creating Countless Hierarchies of Components: From Fundamental Axioms to Testable Laws
3.16.1. Definitions
3.16.2. Combinatorial Mechanisms and Knowledge Generation
3.16.3. Sample Inferences from Mother Principles
3.16.4. Natural Manifestations of Derived Principles
3.16.5. Summary: The Generative Power of Ahuric Principles
3.17. Spatial and Field Structures
3.18. Ahuric Fields (Φ) & 3.19. Advanced and Specialized Fields
3.20. Field Dynamics and Equations
3.21. Relationships Between Fields and Principles
3.22. Key Properties of Ahuric Fields:
3.23. Additional Component Categories
3.23.1. Memory Systems (Λ)
3.23.2. Algorithms )
3.23.3. Operators ()
3.23.4. Mappings ()
3.23.5. Constraints ()
3.23.6. Metrics ()
3.23.7. Networks ()
3.23.8. Potentials ()
3.23.9. Generative Engines ()
3.23.10. Dynamical Systems ()
3.23.11. Emergent Structures ()
3.24. Origin of Each Component Type
3.25. Overall Structure
3.26. Component Complexity Hierarchy
3.27. Intra-Framework Proofs of the Ahuric Framework’s Validity
3.27.1. Proof of Existence and Uniqueness of the Principial Kernel
3.27.2. Proof of Combined Conservation
3.27.3. Proof of Informational Synergy
3.28. Extra-Framework Proofs
3.28.1. Connection with Quantum Physics
3.28.2. Connection with Thermodynamics
3.28.3. Connection with Information Theory
3.29. Synopsis of Key Formal Proofs
3.30. Proof of Architectural Integrity
3.30.1. Proof of Internal Consistency
3.30.2. Proof of Completeness
3.31. Final Mathematical Conclusion
3.32. A Fundamental Beginning and an Endless Continuation3.33. Ahuric Breath of Origination
3.33.1. Conceptual Definition of the Ahuric Breath of Origination
3.33.2. Mathematical Exposition of the Ahuric Breath of Origination
3.33.3. Exposition Based on Ahuric Components
3.33.4. Components Proving Instantaneous Renewal
3.33.5. Mathematical Proof of Instantaneous Renewal
3.33.6. Philosophical and Scientific Implications
3.33.7. Final Conclusion
3.33.8. Ahuric Genesis (Initial Formation of the Universe from Fundamental Ahuric Principles)
3.33.8.A. Conceptual Definition of Ahuric Genesis
2.33.8. B. Mathematical Exposition of Ahuric Genesis
3.33.8. C. Formation of Ahuric Space from Fundamental Principles
3.33.8. D. Emergence of the Ahuric Field and Its Organizing Role
3.33.8. E. Derivation of the 14 Components from the Five Fundamental Components
3.33.8. F. Mechanisms of Initial Genesis
3.33.8. G. Stages of Ahuric Genesis
3.33.8. H. Hierarchical Structure of Genesis
3.33.8. I. Key Properties of Ahuric Genesis
3.33.8. J. Conceptual Summary
3.34. Genesis of Fundamental Particles from the Layers of Ahuric Architecture
3.34.1. General Framework of Particle Genesis from Fundamental Layers
3.34.2. Genesis of Quarks from Ahuric Layers
3.34.3. Genesis of Electrons from Ahuric Layers
3.34.4. Genesis of Protons from Ahuric Layers
3.34.5. Genesis of Neutrons from Ahuric Layers
3.34.6. Integrated Table of Fundamental Particle Genesis
3.34.7. Specialized Genesis Mechanisms
3.34.8. Macroscopic Particle Genesis Processes
3.34.9. Summary
3.35. The “Pre-Genesis” State (Before the Big Bang) in Ahuric Architecture
3.35.1. Definition of the Pre-Genesis State
3.35.2. Components of the Pre-Genesis State
3.35.3. Properties of the Pre-Genesis State
3.35.4. Structure of the Pre-Genesis State
3.35.5. Relations in the Pre-Genesis State
3.35.6. Transition from Pre-Genesis to Genesis
3.35.7. Paradoxes of the Pre-Genesis State
3.35.8. Cognitive Limitations
3.35.9. Summary of the Pre-Genesis State
3.35.10. Final Conclusion
3.36. Explanation of Universal Expansion within the Ahuric Architectural Framework
3.36.1. Cause of Universal Expansion from the Ahuric Perspective
3.36.2. Expansion Mechanisms in Ahuric Architecture
3.37. Examination of the Contribution of Genesis and Breath of Origination in the Creation of World Matter and Energy
3.37.1. Contribution of Genesis and Breath of Origination in Creation
3.37.2. Contribution Allocation Mechanisms
3.37.3. Role of Breath of Origination in Universal Expansion
3.37.4. Precise Calculation of Contributions
3.37.5. Evidence and Arguments for Contribution Allocation
3.37.6. Role of Time in Contributions
3.37.7. Final Summary
3.38. Example: Path and Stages of Creating New Components from Initial Layer Components
3.39. Path of Creation and Components Generating Bottom-Up Emergence
3.39.1. Path of Birth of Bottom-Up Emergence
3.39.2. Key Components Generating Bottom-Up Emergence
3.39.3. Complete Mechanism of Bottom-Up Emergence
3.39.4. Final Summary
3.40. Dynamics of Symmetry Breaking in Ahuric Architecture: From Fundamental Unity to the Necessity of Asymmetry
3.40.1. Origin of Symmetry Breaking: The Necessity of Information-Energy Optimization
3.40.2. Four-Stage Mathematical Mechanism of Symmetry Breaking
3.40.3. Philosophical and Physical Necessity of Symmetry Breaking
3.41. The Role of Ahuric Space and Ahuric Field in the Order of Nature
3.42. Foundation for Natural Laws and Physical-Biological Structures
3.43. Independent Evolution of Eyes in Vertebrates and Octopuses: (Evolutionary Convergence) - An Example of the Manifestation of These Abstract Layers
3.43.1. How Ahuric Principles Interact and Combine in an Evolutionary Path
3.43.2. Return to the Cycle and Formation of New Principles and Laws
3.43.3. Key Evidence of Independent Evolutionary Paths
3.43.4. Conclusion within the Ahuric Framework
3.44. Cycles in Ahuric Architecture
3.44.1. Main and Integrated Cycles
3.45. Interaction and Integration of Cycles in Ahuric Architecture
3.45.1. Mechanisms of Cycle Interaction and Coupling
3.45.2. Mathematical Forms of Cycle Coupling in Ahuric Architecture
3.45.3. Symbol Explanations
3.45.4. Role of “Hubs” or Central Nodes in the Cycle Network
3.45.5. Energy-Information Gateway - Resource Conversion Hub
3.46. Specific Examples of Combination and Physical Results (Cosmic and Biological)
3.46.1. Cosmic Examples
3.46.1. A. The Mystery of CMB Peaks from Phase Interference and RG Flow
3.46.1. B. Vacuum Stabilization and Symmetry Breaking
3.46.1. C. Galactic Structure Formation
3.46.1. D. Emergence of Quasi-Stable Dark Matter
3.46.2. Biological and Molecular Examples
3.46.2. A. Biological Chirality and Molecular Homogenization
3.46.2. B. Morphogenetic Pattern Formation
3.46.2. C. Neural Learning and Memory
3.46.2. D. Enzymatic Evolution and Function Optimization
3.46.2. E. Adaptive Immune System
3.46.3. Ecosystem Examples
3.46.3. A. Food Web Stability
2.46.3. B. Biogeochemical Cycles
3.47. Conclusions
3.47.1. Evolutionary Path from Abstraction to Concreteness:
3.47.2. Key Characteristics of Ahuric Architecture:
3.47.3. Dynamic and Hierarchical Interaction:
3.47.4. Future Horizons:
4. Explaining Scientific Phenomena within the Ahuric Architecture Framework; A Comparative Analysis
4.1. Domain 1: Fundamental Physics and Cosmology - Development Centered on the Big Bang
4.1.1. Phenomenon: The Big Bang and the Origin of Space-Time
4.1.2. Phenomenon: The Horizon Problem
4.1.3. Phenomenon: The Flatness Problem of the Universe
4.1.4. Phenomenon: The Origin of Primordial Anisotropies
4.1.5. Phenomenon: The Formation of Cosmic Structures
4.1.6. Comparative Summary of Big Bang Explanations
4.1.7. Phenomenon: The Origin of Fundamental Constants
4.1.8. Phenomenon: Quantum Entanglement
4.1.9. Phenomenon: The Fine-Tuning Problem
4.1.10. Phenomenon: The Nature of Dark Energy
4.1.11. Analysis of the Conflict Between Relativity and Quantum Mechanics in the Ahuric Framework
4.1.12. Elaboration of the Ahuric View: The Inter-Scale Transition Mechanism
4.1.13. Matter-Antimatter Asymmetry in the Ahuric Framework
4.2. Main Title: Analysis of the Laws of Nature in the Ahuric Framework
4.2.1. Detailed Mechanism of Creation at Each Level
4.2.2. The Complete Cycle of Law Creation
4.2.3. Combination and Interaction Mechanisms
4.2.4. Concrete Examples of Law Creation
4.2.5. Derived Laws of Fundamental Forces with Field Laws
4.2.6. Law of Force Unification [4.AF..012]
4.2.7. Ahuric Parent Principles for Each Force
4.3. Domain 2: Chemistry and the Emergence of Life
4.3.1. Phenomenon: Biological Homochirality
4.3.2. Phenomenon: Molecular Self-Assembly
4.4. Domain 3: Biological Sciences and Evolution
4.4.1. Phenomenon: The Evolution of Complexity
4.4.2. Phenomenon: The Phenomenology of Consciousness
4.5. Domain 4: Cognitive Science and Complex Networks
4.5.1. Phenomenon: Information Propagation in Networks
4.5.2. Phenomenon: Autonomous Systems and Robotics
4.6. Overall Summary and Evaluation
5. Ahuraic Perspective on Chirality and Homochirality
5.1. Testable Predictions within the Ahuraic Framework
5.1. Basic Concepts and Chiral Variables
5.2. Fundamental Principles Governing Symmetry Breaking
5.2. Fundamental Principles Governing Symmetry Breaking (Continued)
5.3. Dynamical Mechanisms and Evolution Equations
5.4. Specialized Chiral Operators
5.5. Macro-Theorems and Predictions
5.6. Measurement Metrics and Quantification
5.7. Chiral Networks and Structures
5.8. Chiral Memory and Learning Systems
5.9. Layered Components of Ahuic Architecture
5.9.1. Layer 0 - Foundational Principle and Core Axioms
5.9.2. Layer 1 - Core Principles
5.9.3. Layer 2 - Structural Principles
5.9.4. Layer 3 - Spatial Infrastructure
5.9.5. Layer 4 - Cycles and Emergence Laws
5.10. Layer Summary
6. Discussion
7. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Meskers, S. C. J. Consequences of chirality on the response of materials. Materials Advances 2022, 3(5), 2324–2336. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Annals of Physics 1984, 158(1), 142–210. [Google Scholar] [CrossRef]
- Sazdjian, H. Introduction to Chiral Symmetry in QCD. 2016, arXiv:1602.03648. [Google Scholar] [CrossRef]
- Ananthanarayan, B.; Khan, M. S. A.; Wyler, D. Reflections on Effective Chiral Theories of the Standard Model. 2023, arXiv:2305.10284. [Google Scholar]
- Thomas, A. W. Reflections on Chiral Symmetry within QCD. Symmetry 2025, 17(4), 512. [Google Scholar] [CrossRef]
- Frolov, V. P.; Kubizňák, D.; Krtouš, P. Chiral anomalies in black hole spacetimes. Physical Review D 2023, 107(4), 045009. https://arxiv.org/abs/2212.11320. [CrossRef]
- Singh, D. Neutrino helicity and chirality transitions in Schwarzschild spacetime. 2004, arXiv:gr-qc/0401044. [Google Scholar]
- Campante, T. L.; Lund, M. N.; Kuszlewicz, J. S.; et al. Spin-orbit alignment of exoplanet systems: ensemble analysis using asteroseismology. 2016, arXiv:1601.06052. [Google Scholar] [CrossRef]
- Capozziello, S.; Lattanzi, A. Spiral Galaxies as Enantiomers: Chirality, an Underlying Feature in Chemistry and Astrophysics. 2005, arXiv:astro-ph/0509316. [Google Scholar] [CrossRef]
- Basiri, A; Chen , X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light: Science & Applications 2019, 8(1), 78. [Google Scholar] [CrossRef]
- Kawamura, H. Chirality in spin glasses. Journal of the Physical Society of Japan 2001, 70 (Suppl. A), 1–14. [Google Scholar]
- Blackmond, D. G. The origin of biological homochirality. Cold Spring Harbor Perspectives in Biology 2010, 2(5), a002147. [Google Scholar] [CrossRef]
- Bonner, W. A. The origin and amplification of biomolecular chirality. Origins of Life and Evolution of the Biosphere 1991, 21(2), 59–111. [Google Scholar] [CrossRef]
- Barron, L. D. Chirality and life. Space Science Reviews 2008, 135(1–4), 187–201. [Google Scholar] [CrossRef]
- Sato, I.; et al. Enzymatic activity in homochiral environments. Chemical Communications 2021, 57(12), 1454–1467. [Google Scholar]
- Glavin, D. P.; Dworkin, J. P.; Lauretta, D. S. The search for chiral asymmetry as a potential biosignature in our solar system. Chemical Reviews 2023, 123(8), 4669–4702. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; et al. Circular polarization in star-forming regions: implications for biomolecular homochirality. Science 1998, 281(5377), 672–674. [Google Scholar] [CrossRef]
- Yamagata, Y. A hypothesis for the asymmetric appearance of biomolecules on earth. Journal of Theoretical Biology 1966, 11(3), 495–498. [Google Scholar] [CrossRef]
- Soai, K.; et al. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 1995, 378(6559), 767–768. [Google Scholar] [CrossRef]
- Hein, J. E.; Blackmond, D. G. On the origin of single chirality of amino acids and sugars in biogenesis. Accounts of Chemical Research 2012, 45(12), 2045–2054. [Google Scholar] [CrossRef]
- Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity and the emergence of spin-based biology. Annual Review of Biophysics 2022, 51, 99–114. [Google Scholar] [CrossRef]
- Theiler, J. P.; Graf, J.; Wegner, D. Non-Hermitian exchange as the origin of chirality-induced spin selectivity. 2025, arXiv:2505.06173. [Google Scholar]
- Blohm, I, Miranda. Next-generation IS research methods – towards a better understanding of complex and dynamic phenomena and Generative AI as the elephant in the room. J Inf Technol. 2025, 40(2), 102–121, alexandria.unisg.ch+2journals.sagepub.com+2. [Google Scholar] [CrossRef]
- Bhandari, M.; Reddiboina, M. Augmented intelligence: A synergy between man and the machine. Indian Journal of Urology 2019, 35(2), 89–91. [Google Scholar] [CrossRef]
- Schröder, A.; Constantiou, I.; Tuunainen, V. K.; Austin, R. D. Human–AI collaboration: Coordinating automation and augmentation tasks in a digital service company. In Proceedings of the 55th Hawaii International Conference on System Sciences; 2022; pp. 206–215. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, J.; Li, W. Examining human–AI collaboration in hybrid intelligence learning environments: Insights from the synergy degree model. Humanities and Social Sciences Communications 2025, 12(1), 5097. [Google Scholar] [CrossRef]
- Schwab, I. R. The evolution of eyes: major steps (The Keeler Lecture 2017). Eye 2018, 32, 302–313. [Google Scholar] [CrossRef]
- Nilsson, D. E.; Pelger, S. A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society B 1994, 256(1345), 53–58. [Google Scholar]
- Ogura, A.; Yoshida, M. A.; Kito, K. The eye of the cephalopod: a molecular biological approach. Comparative Biochemistry and Physiology Part B 2004, 139(4), 621–626. [Google Scholar]
- Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A Status Report. Classical and Quantum Gravity 2011, 28(21), 213001. [Google Scholar] [CrossRef]
- Borde, A.; Guth, A. H.; Vilenkin, A. Inflationary spacetimes are not past-complete. Physical Review Letters 2003, 90(15), 151301. [Google Scholar] [CrossRef]
- Guth, A. H.; Nomura, Y. What can the multiverse tell us about the measure problem? JCAP 2021, 2021(10), 024. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. VII. Isotropy and Statistics of the CMB. Astronomy & Astrophysics 2020, 641, A7, aanda.org+1. [Google Scholar] [CrossRef]
- Guth, A. H. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 1981, 23(2), 347–356. [Google Scholar] [CrossRef]
- Mukhanov, V. F.; Chibisov, G. V. Quantum fluctuations and a nonsingular universe. JETP Letters 1981, 33, 532–535. [Google Scholar]
- Guth, A. H.; Pi, S.-Y. Fluctuations in the new inflationary universe. Physical Review Letters 1982, 49(15), 1110–1113. [Google Scholar] [CrossRef]
- Peebles, P. J. E. The Large-Scale Structure of the Universe; Princeton University Press, 1980. [Google Scholar]
- Springel, V.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435(7042), 629–636. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Reviews of Modern Physics 1989, 61(1), 1–23. [Google Scholar] [CrossRef]
- Susskind, L. The anthropic landscape of string theory. 2003, arXiv:hep-th/0302219. [Google Scholar] [CrossRef]
- Martínez, M.; Zanolin, M. Is the Fine-Tuning Evidence for a Multiverse? Synthese 2024. [Google Scholar] [CrossRef]
- Kauffman, S. The Anthropic Principle Is Testable and Appears Weak. 2022, arXiv:2205.12896. [Google Scholar]
- Cosmological Fine-Tuning and Life-Permitting Intervals. 2024, arXiv:2401.04190.
- Weinberg, D. H.; White, M. 28. Dark Energy, in Review of Particle Physics (PTEP 2022, 083C01; 2023 update); Particle Data Group, 2023. [Google Scholar]
- Quantum Gravity. Stanford Encyclopedia of Philosophy (Fall 2024 Edition). 2024. [Google Scholar]
- Singh, T. P. Classical and quantum: a conflict of interest. arXiv preprint 2024. [Google Scholar]
- Gershon, T.; Nir, Y. CP Violation in the Quark Sector. In Review of Particle Physics; Particle Data Group, 2023. [Google Scholar]
- LHCb Collaboration. Observation of charge–parity symmetry breaking in baryon decays. Nature 2025. (25 March 2025). [Google Scholar]
- Croon, D.; Gonzalo, T. E.; Graf, L.; Košnik, N.; White, G. GUT Physics in the era of the LHC. 2019, arXiv:1903.04977. [Google Scholar] [CrossRef]
- Sall Embien, Q., Raynal, M., Crassous, J., (2022). Possible chemical and physical scenarios towards biological homchirality. Chemical Society Reviews 51(10), 4025 4044. [CrossRef]
- Smith, J. M.; Szathmáry, E. The Origins of Life: From the Birth of Life to the Origin of Language, Revised ed.; Oxford University Press, 2020. [Google Scholar]
- Lane, N. The Vital Question: Energy, Evolution, and the Origins of Complex Life; W. W. Norton & Company, 2015. [Google Scholar]
- Blackmond, D. G. The Origin of Biological Homochirality. Cold Spring Harbor Perspectives in Biology 2019, 11(3), a032540. [Google Scholar] [CrossRef]
- Lehn, J.-M. Perspectives in Chemistry – Steps Towards Complex Matter. Angewandte Chemie International Edition 2022, 61(14), e202200040. [Google Scholar] [CrossRef]
- Goyal, P.; Li, Y.; Nguyen, H. D. Thermodynamic Control of Molecular Self-Assembly: From Supramolecular Chemistry to Biological Systems. Chemical Reviews 2024, 124(3), 1557–1590. [Google Scholar] [CrossRef]
- Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295(5564), 2418–2421. [Google Scholar] [CrossRef]
- McShea, D. W.; Brandon, R. N. Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems; Oxford University Press, 2023. [Google Scholar]
- Lane, N. Transformer: The Deep Chemistry of Life and Death; W. W. Norton & Company, 2022. [Google Scholar]
- Lynch, M. The Origins of Cellular Complexity. Proceedings of the National Academy of Sciences 2023, 120(9), e2218930120. [Google Scholar] [CrossRef]
- Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated Information Theory: From Consciousness to its Physical Substrate. Nature Reviews Neuroscience 2023, 24(5), 300–317. [Google Scholar] [CrossRef]
- Dehaene, S. Consciousness and the Brain: A Decade of Global Workspace Research. Trends in Cognitive Sciences 2024, 28(1), 12–25. [Google Scholar] [CrossRef]
- Seth, A. K. Being You: A New Science of Consciousness; Faber & Faber, 2021. [Google Scholar]
- Pastor-Satorras, R; Castellano, C; Van Mieghem, P; Vespignani, A. Epidemic processes in complex networks. Rev Mod Phys. 2015, 87(3), 925–979. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Yu, H. Modeling and prediction of information diffusion in complex social networks. Information Sciences 2023, 623, 102–121. [Google Scholar] [CrossRef]
- Holme, P. Temporal Network Theory: Dynamics, Spreading, and Control; Oxford University Press, 2024. [Google Scholar]
- Todorov, E.; Li, W. Optimal control and estimation in robotics and autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems 2023, 6, 1–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
