Submitted:
01 November 2025
Posted:
03 November 2025
You are already at the latest version
Abstract
Arboviruses such as dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) remain major global health threats, especially in tropical regions, with no effective antiviral treatments available. Recent research highlights progress in identifying antiviral compounds from natural sources against arboviruses belonging to the flavivirus genus such as DENV and ZIKV. These compounds, derived from plants, marine organisms, and microorganisms, fall into several key chemical classes: quinones, flavonoids, phenolics, terpenoids, and alkaloids. Quinones inhibit viral entry and replication by targeting envelope proteins and proteases. Flavonoids disrupt RNA synthesis and show virucidal activity. Phenolic compounds reduce expression of non-structural proteins and inhibit enzyme function. Terpenoids demonstrate broad-spectrum activity against multiple arboviruses, while alkaloids interfere with early infection stages or viral enzymes. To support the reviewed literature, we performed molecular docking analyses of selected natural compounds and some arboviral proteins included as illustrative examples. These analyses support the structure–activity relationships reported for some natural compounds and highlight their potential interactions with essential viral targets such as the NS2B-NS3 protease and NS5 polymerase. Together, these literature and computational insights highlight the potential of natural products as scaffolds for antiviral drug development.
Keywords:
1. Introduction

| Compound | Source | EC50 or IC50 | Active against | Energy affinity (Kcal/mol) | Mode of action | Reference |
| EMO | Natural | 3.2 µM | Envelope – ZIKV | -7.142 | Inhibiting viral entry | [29] |
| GYD | Natural | 0.8 µM | DENV1 | ND | ND | [31] |
| ARDP | Derivative | 1.5 µM | NS2B-NS3 – DENV2 | -8.167 | Protease inhibition | [32] |
| NQ4 | Derivative | 5.1 µM | Envelope – DENV2 | -7.496 | Pre-infective stages | [34] |
| DTQ | Natural | DENV3 | -43.6 | NS5 MTase | [35] | |
| PyNQ | Derivative | 0.3 µM | NS2B-NS3 | -9.404 | Inhibit the ATPase activity | [36] |
| Bis-NQ1 | Derivative | 1.3 µM | ZIKV | ND | ND | [37] |
| Bis-NQ2 | Derivative | 0.6 µM | ZIKV | ND | ND | [37] |
| PSD | Derivative | 1.3 µM | NS5- ZIKV | -27.4 | RNA-dependent RNA polymerase | [38] |
| GBN | Natural | 25 µM | DENV2 | ND | ND | [39] |
| HPSD | Natural | 21 µM | NS5 RdRp – DENV2 | -7.425 | Inhibits intracellular RNA synthesis | [40] |
| QCT | Natural | 116 µM | NS5 RdRp – DENV2 | -7.517 | Inhibit cellular RNA polymerases | [41] |
| BCLN | Natural | 23 µM | Envelope – DENV2 | -8.645 | Direct virucidal activity | [42] |
| BAC | Natural | 10 µM | NS5 RdRp – DENV2 | -8.596 | Inhibits RNA synthesis | [43] |
| TERP-1 | Natural | 12 µM | NS5 - DENV | ND | ND | [44] |
| TERP-2 | Natural | 3 µM | NS5 - DENV | ND | ND | [44] |
| TERP-3 | Natural | 16 µM | NS5 - DENV | ND | ND | [44] |
| ABF1 | Derivative | 10 µM | DENV2 | ND | ND | [45] |
| ABF2 | Derivative | 1.4 µM | DENV2 | ND | ND | [45] |
| MGT | Natural | 1620 µM | NS2B-NS3 – DENV2 | -5.838 | Protease inhibition and down-regulated NS1 expression | [46] |
| EMT | Natural | 0.5 µM | DENV2 | ND | targeting viral RNA synthesis or protein translation | [47] |
| PMT | Natural | 26 µM | NS2B-NS3 – DENV2 | -7.443 | Inhibited protease | [48] |
2. Drugs and Prodrugs with Antiviral Activity Against Arboviruses
2.1. Chloroquine, Increasing the Endosomal pH to Hinder Virus Replication

2.2. Balapiravir, a Nucleoside Analog That Inhibit Viral RNA Polymerases
2.3. Celgosivir, Affecting Glucosidases at the Endoplasmic Reticulum

2.4. Iminosugars, Impacting Post-Translational Modifications to Inhibit Viral Proteins
3. Natural Compounds with Antiviral Activity Against Arboviruses
3.1. Quinones, a Group of Natural Compounds with Privileged Structures



3.2. Flavonoids, Small Natural Compounds with Multiple Functions

3.3. Terpenoids, a Group of Secondary Metabolites with Antiviral Properties

3.4. Phenolics, Aromatic Antioxidant Compounds with Potential Antiviral Activity

3.5. Alkaloids, Chemical with Complex Chemical Structures as Promising Antiviral Candidates
4. Conclusions
5. Materials and Methods
5.1. Preparation of Proteins
5.2. Pocket Selection for Validation
5.3. Ligand Selection and Preparation
5.4. Molecular Docking
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DENV | Dengue virus |
| ZIKV | Zika virus |
| CHIKV | Chikungunya virus |
| NS | Non structural proteins. |
| RdRp | RNA-dependent RNA polymerase |
| ER | Endoplasmic reticulum |
| TGN | Trans-Golgi Network |
| FRNT | Focus Reduction Neutralization Test |
| EMO | Emodin |
| GYD | Gymnochrome D |
| ARDP | Anthraquinone ARDP0006 |
| DTQ | Dithymoquinone |
| PyNQ | 1,4-pyranonaphthoquinones |
| GBN | Glabranine |
| 7MGBN | 7-O-methyl-glabranine |
| HPSD | Hyperoside |
| QCT | Quercetin |
| BCLN | Baicalein |
| MGT | Methyl gallate |
| BAC | Betulinic acid |
| EMT | Emetine |
| PMT | Palmatine |
| ABF | Ferruginol |
| TERP | Terpenes |
References
- Caputo, A.T.; Alonzi, D.S.; Kiappes, J.L.; Struwe, W.B.; Cross, A.; Basu, S.; Darlot, B.; Roversi, P. Dengue and Zika: Control and Antiviral Treatment Strategies. Adv Exp Med Biol 2018, 1062, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Nelson, C.B.; Picot, V.; Gubler, D.J. Arboviruses: A global public health threat. Vaccine 2020, 38, 3989–3994. [Google Scholar] [CrossRef]
- Rodriguez, A.K.; Muñoz, A.L.; Segura, N.A.; Rangel, H.R.; Bello, F. Molecular characteristics and replication mechanism of dengue, zika and chikungunya arboviruses, and their treatments with natural extracts from plants: An updated review. EXCLI J. 2019, 18, 988–1006. [Google Scholar] [CrossRef] [PubMed]
- Labiod, N.; Chamorro-Tojeiro, S.; de la Calle-Prieto, F.; Gutiérrez-López, R.; Sánchez-Seco, M.P.; Vázquez, A.; Virus, O. A New Emerging Threat. Curr. Infect. Dis. Rep. 2025, 27. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. Membranes (Basel). 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Muller, D.A.; Young, P.R. The flavivirus NS1 protein: Molecular and structural biology, immunology, role inpathogenesis and application asadiagnostic biomarker. Antiviral Res. 2013, 98, 192–208. [Google Scholar] [CrossRef]
- Glasner, D.R.; Puerta-Guardo, H.; Beatty, P.R.; Harris, E. ; The good; the bad, and the shocking: The multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu. Rev. Virol. 2018, 5, 227–253. [Google Scholar] [CrossRef]
- Thomas, S.J. Is new dengue vaccine efficacy data a relief or cause for concern? Npj Vaccines 2023, 8, 55. [Google Scholar] [CrossRef]
- Halstead, S.B. Three Dengue Vaccines — What Now? N. Engl. J. Med. 2024, 390, 464–465. [Google Scholar] [CrossRef]
- Obi, J.O.; Guti, H.; Chua, J.V. Current Trends and Limitations in Dengue Antiviral Research. Trop. Med. Infect. Dis. 2021, 6, 1–19. [Google Scholar] [CrossRef]
- Waickman, A.T.; Newell, K.; Endy, T.P.; Thomas, S.J. Biologics for dengue prevention: Up-to- date. Expert Opin. Biol. Ther. 2023, 1, 73–87. [Google Scholar]
- Liyanage, N.M.; Nagahawatta, D.P.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Jayawrdhana, H.H.A.C.K.; Kim, J.I.; Jeon, Y.J. Sulfated Polysaccharides from Seaweeds: A Promising Strategy for Combatting Viral Diseases—A Review. Mar. Drugs 2023, 21, 1–15. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, R.; Wang, M.; Xu, G.; Liao, S. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem. 2017, 131, 222–236. [Google Scholar] [CrossRef]
- Borges, M.C.; Castro, L.A.; da Fonseca, B.A.L. Chloroquine use improves dengue-related symptoms. Mem. Inst. Oswaldo Cruz 2013, 108, 596–599. [Google Scholar] [CrossRef]
- Farias, K.J.S.; Machado, P.R.L.; Da Fonseca, B.A.L. Chloroquine inhibits dengue virus type 2 replication in vero cells but not in C6/36 cells. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef]
- Kaptein, S.J.; Neyts, J. Towards antiviral therapies for treating dengue virus infections. Curr. Opin. Pharmacol. 2016, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.; Wei, Y.; Watanabe, S.; Lee, H.S.; Khoo, Y.M.; Fan, L.; Rathore, A.P.S.; Chan, K.W.K.; Choy, M.M.; Kamaraj, U.S.; et al. Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients. PLoS Negl. Trop. Dis. 2016, 10, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.S.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; et al. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): A phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis. 2014, 14, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Chan, K.W.K.; Dow, G.; Ooi, E.E.; Low, J.G.; Vasudevan, S.G. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy. Antiviral Res. 2016, 127, 10–19. [Google Scholar] [CrossRef]
- Sayce, A.C.; Alonzi, D.S.; Killingbeck, S.S.; Tyrrell, B.E.; Hill, M.L.; Caputo, A.T.; Iwaki, R.; Kinami, K.; Ide, D.; Kiappes, J.L.; et al. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes. PLoS Negl. Trop. Dis. 2016, 10, 1–22. [Google Scholar] [CrossRef]
- Gruner, S.A.W.; Locardi, E.; Lohof, E.; Kessler, H. Carbohydrate-based mimetics in drug design: Sugar amino acids and carbohydrate scaffolds. Chem. Rev. 2002, 102, 491–514. [Google Scholar] [CrossRef] [PubMed]
- Warfield, K.L.; Schaaf, K.R.; DeWald, L.E.; Spurgers, K.B.; Wang, W.; Stavale, E.; Mendenhall, M.; Shilts, M.H.; Stockwell, T.B.; Barnard, D.L.; et al. Lack of selective resistance of influenza A virus in presence of host-targeted antiviral, UV-4B. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Franco, E.J.; de Mello, C.P.P.; Brown, A.N. Antiviral evaluation of UV-4B and interferon-alpha combination regimens against dengue virus. Viruses 2021, 13. [Google Scholar] [CrossRef]
- Warfield, K.L.; Plummer, E.M.; Sayce, A.C.; Alonzi, D.S.; Tang, W.; Tyrrell, B.E.; Hill, M.L.; Caputo, A.T.; Killingbeck, S.S.; Beatty, P.R.; et al. Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antiviral Res. 2016, 129, 93–98. [Google Scholar] [CrossRef]
- de Castro Barbosa, E.; Alves, T.M.A.; Kohlhoff, M.; Jangola, S.T.G.; Pires, D.E.V.; Figueiredo, A.C.C.; Alves, É.A.R.; Calzavara-Silva, C.E.; Sobral, M.; Kroon, E.G.; Rosa, L.H.; et al. Searching for plant-derived antivirals against dengue virus and Zika virus. Virol. J. 2022, 19, 1–15. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, J.Y.; Liu, N.; Chen, M.H.; Zheng, W.; Zhang, J.; Chen, X.J.; Cen, S.; Yu, L.Y.; Ma, B.P. Anthraquinone analogues with inhibitory activities against influenza a virus from Polygonatum odoratum. J. Asian Nat. Prod. Res. 2021, 23, 717–723. [Google Scholar] [CrossRef]
- El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev. 2011, 10, 353–370. [Google Scholar] [CrossRef]
- Malik, M.S.; Alsantali, R.I.; Jassas, R.S.; Alsimaree, A.A.; Syed, R.; Alsharif, M.A.; Kalpana, K.; Morad, M.; Althagafi, I.I.; Ahmed, S.A. Journey of anthraquinones as anticancer agents-a systematic review of recent literature. RSC Adv. 2021, 11, 35806–35827. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, T.; Wang, W.; Liu, T.; Jin, X.; Chen, Z. Promising Role of Emodin as Therapeutics to Against Viral Infections. Front. Pharmacol. 2022, 13, 902626. [Google Scholar] [CrossRef]
- Batista, M.N.; Braga, A.C.S.; Campos, G.R.F.; Souza, M.M.; de Matos, R.P.A.; Lopes, T.Z.; Candido, N.M.; Lima, M.L.D.; Machado, F.C.; de Andrade, S.T.Q.; et al. Natural products isolated from oriental medicinal herbs inactivate zika virus. Viruses 2019, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.R.; Pereira, W.L.; Da Silveira Oliveira, A.F.C.; Da Silva, A.M.; De Oliveira, A.S.; Da Silva, M.L.; Da Silva, C.C.; De Paula, S.O. Natural products as source of potential dengue antivirals. Molecules 2014, 19, 8151–8176. [Google Scholar] [CrossRef]
- Chu, J.J.H.; Lee, R.C.H.; Ang, M.J.Y.; Wang, W.L.; Lim, H.A.; Wee, J.L.K.; Joy, J.; Hill, J.; Chia, C.S.B. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay. Antiviral Res. 2015, 118, 68–74. [Google Scholar] [CrossRef]
- S. M.T.; Watowich, S.J. Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease. Antiviral Res. 2011, 89, 127–135. [Google Scholar] [CrossRef]
- Roa-Linares, V.C.; Miranda-Brand, Y.; Tangarife-Castaño, V.; Ochoa, R.; García, P.A.; Castro, M.Á.; Betancur-Galvis, L.; Feliciano, A.S. ; Anti-herpetic, anti-dengue and antineoplastic activities of simple and heterocycle-fused derivatives of terpenyl-1,4-naphthoquinone and 1,4-anthraquinone. Molecules 2019, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Roney, M.; Dubey, A.; Nasir, M.H.; Huq, A.M.; Tufail, A.; Tajuddin, S.N.; Zamri, N.B.; Aluwi, M.F.F.M. Computational evaluation of quinones of Nigella sativa L. as potential inhibitor of dengue virus NS5 methyltransferase. J. Biomol. Struct. Dyn. 2023, 0, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, E.C.B.; Amorim, R.; Da Silva, F.C.; Rocha, D.R.; Papa, M.P.; De Arruda, L.B.; Mohana-Borges, R.; Ferreira, V.F.; Tanuri, A.; Da Costa, L.J.; et al. Synthetic,4-pyran naphthoquinones are potent inhibitors of dengue virus replication. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, D.T.G.; Gomes, R.S.P.; Marra, R.K.F.; da Silva, F.C.; Gomes, M.W.L.; Ferreira, D.F.; Santos, R.M.A.; Pinto, A.M.V.; Ratcliffe, N.A.; Cirne-Santos, C.C.; et al. Inhibition of Zika virus replication by synthetic bis-naphthoquinones. J. Braz. Chem. Soc. 2019, 30, 1697–1706. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, J.; Chen, T.; Liu, W.; Huang, Y.; Li, J.; Zhang, B.; Zhu, G.; He, Z.; Long, Y.; et al. Design; synthesis, and biological evaluation of a series of new anthraquinone derivatives as anti-ZIKV agents. Eur. J. Med. Chem. 2023, 258, 115620. [Google Scholar] [CrossRef]
- Sánchez, I.; Gómez-Garibay, F.; Taboada, J.; Ruiz, B.H. Antiviral effect of flavonoids on the dengue virus. Phyther. Res. 2000, 14, 89–92. [Google Scholar] [CrossRef]
- Leardkamolkarn, V.; Sirigulpanit, W.; Phurimsak, C.; Kumkate, S.; Himakoun, L.; Sripanidkulchai, B. The inhibitory actions of houttuynia cordata aqueous extract on dengue virus and dengue-infected cells. J. Food Biochem. 2012, 36, 86–92. [Google Scholar] [CrossRef]
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J. 2011, 8, 1–11. [Google Scholar] [CrossRef]
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Novel antiviral activity of baicalein against dengue virus, BMC Complement. Altern. Med. 2012, 12. [Google Scholar] [CrossRef]
- Loe, M.W.C.; Hao, E.; Chen, M.; Li, C.; Lee, R.C.H.; Zhu, I.X.Y.; Teo, Z.Y.; Chin, W.X.; Hou, X.; Deng, J.G.; et al. Betulinic acid exhibits antiviral effects against dengue virus infection. Antiviral Res. 2020, 184, 104954. [Google Scholar] [CrossRef]
- Allard, P.M.; Leyssen, P.; Martin, M.T.; Bourjot, M.; Dumontet, V.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Poullain, C.; Guéritte, F.; et al. Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri. Phytochemistry 2012, 84, 160–168. [Google Scholar] [CrossRef] [PubMed]
- González-Cardenete, M.A.; Hamulić, D.; Miquel-Leal, F.J.; González-Zapata, N.; Jimenez-Jarava, O.J.; Brand, Y.M.; Restrepo-Mendez, L.C.; Martinez-Gutierrez, M.; Betancur-Galvis, L.A.; Marín, M.L. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J. Nat. Prod. 2022, 85, 2044–2051. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A.; Hadinur; Muliawan, S.; Rashid, N.N.; Muhamad, M.; Yusof, R. Studies on Quercus Iusitanica extracts on DENV-2 replication. Dengue Bull. 2006, 30, 260–269.
- Low, J.S.Y.; Chen, K.C.; Wu, K.X.; Ng, M.M.-L.; Chu, J.J.H. Antiviral Activity of Emetine Dihydrochloride Against Dengue Virus Infection. J. Antivir. Antiretrovir. 2009, 01, 062–071. [Google Scholar] [CrossRef]
- Jia, F.; Zou, G.; Fan, J.; Yuan, Z. Identification of palmatine as an inhibitor of West Nile virus. Arch. Virol. 2010, 155, 1325–1329. [Google Scholar] [CrossRef]
- Cataneo, A.H.D.; Ávila, E.P.; de O, L.A.; de Oliveira, V.G.; Ferraz, C.R.; de Almeida, M.V.; Frabasile, S.; Santos, C.N.D.D.; Verri, W.A.; Bordignon, J.; et al. Flavonoids as Molecules With Anti-Zika virus Activity. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Oo, A.; Teoh, B.T.; Sam, S.S.; Bakar, S.A.; Zandi, K. Baicalein and baicalin as Zika virus inhibitors. Arch. Virol. 2019, 164, 585–593. [Google Scholar] [CrossRef]
- Dewick, P. Medicinal Natural Products: A Byosynthetic Approach, Second Edi, John Wiley & Sons Ltd., 2002. [CrossRef]
- Vázquez-Calvo, Á.Á.; de Oya, N.J.; Martín-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front. Microbiol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bourjot, M.; Leyssen, P.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M.; A-F, F. phenolic glycosides isolated from Flacourtia ramontchi. J. Nat. Prod. 2012, 75, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Purohit, P.; Sahoo, S.; Panda, M.; Sahoo, P.S.; Meher, B.R. Targeting the DENV NS2B-NS3 protease with active antiviral phytocompounds: Structure-based virtual screening, molecular docking and molecular dynamics simulation studies. J. Mol. Model. 2022, 28. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.; Ismatullah, H.; Rauf, S.; Niazi, U.H.K. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics Med. Unlocked 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Hanwell, M.; Curtis, D.; Lonie, D.; Vandermeersch, T.; Zurek, E.; Hutchison, G. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 17, 1–17. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
