Submitted:
24 October 2025
Posted:
28 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Neglected Tropical Diseases and the Climate Emergency
3. Heterocycles in the Development of New Treatments for NTDs
4. Green Chemistry Principles
- Waste Prevention: It is better to prevent waste from being created in the first place than to treat or clean it up later [51]. The use of solvents, catalysts, and auxiliaries in a chemical reaction, as well as handling solvents for separation and purification steps, must be reconsidered. Strategies such as solvent-free reactions and one-pot multi-step synthesis fulfill this principle [50].
- Atom Economy: Synthetic methodologies must be optimized to achieve the maximum incorporation of all starting materials into the final product [51]. This minimizes byproduct formation, reduces the environmental burden, aims for “more from less,” incorporates the total value of materials, and reduces costs [49]. Chemical transformations like cycloadditions, molecular rearrangements, and isomerizations are intrinsically atom-economical since 100% of the atoms in the reactants remain in the desired product. Similarly, Multicomponent Reactions (MCRs) are atom-economical [50].
- Less Hazardous Chemical Synthesis: Synthetic procedures should, wherever feasible, be designed to utilize and generate materials exhibiting little or no toxicity to human health and the environment [51]. Non-hazardous materials and processes reduce the risk of exposure, release, explosions, and fires, improve worker safety, and reduce costs related to special control measures [49].
- Designing Safer Chemicals: Chemical products should be engineered to deliver their required function while simultaneously minimizing inherent toxicity [51]. A “safe chemical” has reduced toxicity to humans and does not persist or bioaccumulate in the environment. A huge push in this direction has been given by computer-aided drug discovery, which can now efficiently provide researchers with predicted ADME-Tox data. However, ecotoxicity has not yet received similar significant attention. Drugs for human use are primarily introduced into the environment as unmetabolized drugs and/or their metabolites through effluent discharge, while unused drugs may come from sources like hospitals, households, and the pharmaceutical industry. Thus, a structured implementation of in silico methods for ecotoxicological assessment is highly needed for designing and synthesizing pharmaceuticals that prevent environmental risk [50].
- Safer Solvents and Auxiliaries: The utilization of auxiliary substances, such as solvents and separation agents, should be eliminated whenever possible; if required, they must be innocuous [51]. Minimizing solvent usage leads to decreased solvent waste and a lower environmental impact [49]. Green chemistry promotes the use of safer alternatives, such as water or bio-based solvents, and the development of environmentally friendly and non-volatile solvents. In this respect, Ionic Liquids (ILs) are non-volatile, with thermal stability over 350 °C, minimize evaporation and environmental release, and are non-explosive, easy to handle, thermally robust, and recyclable [50].
- Design for Energy Efficiency: The energetic demands of chemical processes must be acknowledged for their environmental and economic consequences and should be rigorously minimized. Where feasible, synthetic methods ought to be executed at ambient temperature and pressure [51]. This reduces the environmental burden related to power generation, increases efficiency, shortens processes, and reduces costs [49]. Strategies to reduce energy consumption and solvent use include microwave (MW)-assisted chemistry and mechanochemistry (where chemical reactions are initiated by mechanical energy at room temperature with minimized solvent use), as many of these techniques employ solvent-free methodologies [50].
- Use of Renewable Feedstocks: A raw material or feedstock should be renewable rather than non-renewable whenever technically and economically feasible [51]. The production of bioactive compounds from agricultural and food waste holds immense promise within the framework of a circular economy perspective, as these materials represent an almost inexhaustible source of high-value-added molecules [50].
- Reduce Derivatives: Unnecessary derivatization (e.g., the use of protecting or blocking groups) should be minimized or completely eliminated, as these steps necessitate additional reagents and generate waste [51]. Each additional synthetic step consumes resources and contributes to waste. By optimizing synthetic routes, chemists can increase overall process efficiency. Solvent-free, one-pot, and multicomponent procedures, flow chemistry, and computational approaches play a pivotal role in reducing the number of steps and chemical derivatives [50].
- Catalysis: Catalysts should be employed over stoichiometric reagents to minimize waste, as they are effective in small amounts and capable of repeated transformations [51]. Modern synthetic chemistry is increasingly leveraging highly efficient and environmentally benign tools, such as metathesis, biocatalysis, and photocatalysis. Catalysis is a central pillar of green chemistry, facilitating milder reaction conditions, significantly lowering energy requirements, and enhancing reaction selectivity. Furthermore, catalysts are often more sustainable than stoichiometric reagents, making them crucial for the efficient synthesis of Active Pharmaceutical Ingredients (APIs) and other bioactive compounds [50].
- Design for Degradation: Chemical products should be intentionally designed to degrade into innocuous substances after use, thereby preventing environmental persistence [51]. Knowledge regarding the biodegradation of human and veterinary pharmaceuticals (and their metabolites) remains limited, particularly concerning their effects on ecological processes driven by microorganisms. Nonetheless, the focus of current research includes investigating the toxicity in terrestrial and aquatic environments, especially the chronic ecotoxicological impact on non-target species such as invertebrates, plants, and algae [50].
- Real-Time Analysis for Pollution Prevention: To ensure pollution prevention, robust analytical techniques must be developed that allow for the real-time, in-process control of chemical reactions before hazardous materials can form [51]. The principles of Real-Time Analysis for Pollution Prevention (RTAP) can be applied throughout the drug discovery and production pipeline to proactively identify and mitigate potential sources of pollution or environmental damage. This approach underscores the crucial shift from reactive strategies to proactive pollution prevention measures [50].
- Inherently Safer Chemistry for Accident Prevention: Chemical processes should be inherently designed to use and handle materials in a manner that drastically minimizes the risk of chemical accidents, such as explosions, fires, and uncontrolled releases [51]. The principle of Inherently Safer Chemistry (ISC) promotes the use of processes designed to minimize the risk and severity of chemical accidents. This focus on hazard minimization is central to creating a more robust chemical industry. Accordingly, maximizing operational simplicity is essential in all fields as it directly reduces the overall potential for accidents [50].
5. Heterocyclic Scaffolds for NTD Drug Discovery: Green Synthetic Approaches
5.1. Microwave-Assisted Sustainable Synthesis: Solvent-Free and Green-Solvent Pathways
5.2. Ultrasound as a Green Tool for the Synthesis of Heterocyclic Scaffolds
5.3. Mechanochemical Advances Enabling One-Pot Multistep Organic Synthesis
5.4. Ionic Liquids as Catalysts in Green Chemistry Approaches
5.5. Deep Eutectic Solvents in Sustainable Heterocycle Synthesis
6. Conclusions
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
References
- World Health Organization. Neglected Tropical Diseases. www.who.int. https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1.
- Tidman, R.; Abela-Ridder, B.; de Castañeda, R.R. The Impact of Climate Change on Neglected Tropical Diseases: A Systematic Review. Transactions of The Royal Society of Tropical Medicine and Hygiene 2021, 115, 147–168. [Google Scholar] [CrossRef]
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; Franklin, E.C. Over Half of Known Human Pathogenic Diseases Can Be Aggravated by Climate Change. Nature Climate Change 2022, 12. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 oC. IPCC. https://www.ipcc.ch/sr15/.
- Liu, Q.; Tan, Z.-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z. Changing Rapid Weather Variability Increases Influenza Epidemic Risk in a Warming Climate. Environmental Research Letters 2020, 15, 044004. [Google Scholar] [CrossRef]
- Ward, M.; O’Boyle, N.M. Analysis of the Structural Diversity of Heterocycles amongst European Medicines Agency Approved Pharmaceuticals (2014–2023). RSC Medicinal Chemistry 2025, 16, 4540–4570. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Castro, J.L.; Lawson, A.D.G.; MacCoss, M.; Taylor, R.D. Rings in Clinical Trials and Drugs: Present and Future. Journal of Medicinal Chemistry 2022, 65, 8699–8712. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, C.; Matos, V.; Lana, R.M.; Lowe, R. Climate Change, Thermal Anomalies, and the Recent Progression of Dengue in Brazil. Scientific Reports 2024, 14, 5948. [Google Scholar] [CrossRef]
- Peerzada, M.N.; Hamel, E.; Bai, R.; Supuran, C.T. Deciphering the Key Heterocyclic Scaffolds in Targeting Microtubules, Kinases and Carbonic Anhydrases for Cancer Drug Development. Pharmacology & Therapeutics 2021, 225, 107860. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.; Uzzaman, M. A Review on Biological and Medicinal Impact of Heterocyclic Compounds. Results in Chemistry 2022, 4, 100606. [Google Scholar] [CrossRef]
- Desai, N.; Monapara, J.; Jethawa, A.; Khedkar, V.; Shingate, B. Oxadiazole: A Highly Versatile Scaffold in Drug Discovery. Archiv der Pharmazie 2022, 355. [Google Scholar] [CrossRef]
- De, S.; Aamna, B.; Sahu, R.; Parida, S.; Behera, S.K.; Dan, A.K. Seeking Heterocyclic Scaffolds as Antivirals against Dengue Virus. European Journal of Medicinal Chemistry 2022, 240, 114576. [Google Scholar] [CrossRef]
- Maus, H.; Barthels, F.; Hammerschmidt, S.J.; Kopp, K.; Millies, B.; Gellert, A.; Ruggieri, A.; Schirmeister, T. SAR of Novel Benzothiazoles Targeting an Allosteric Pocket of DENV and ZIKV NS2B/NS3 Proteases. Bioorganic & Medicinal Chemistry 2021, 47, 116392. [Google Scholar] [CrossRef]
- Byrd, C.M.; Grosenbach, D.W.; Berhanu, A.; Dai, D.; Jones, K.F.; Cardwell, K.B.; Schneider, C.A.; Yang, G.; Tyavanagimatt, S.; Harver, C.; Wineinger, K.A.; Pagé, J.; Stavale, E.; Stone, M.A.; Fuller, K.; Lovejoy, C.; Leeds, J.M.; Hruby, D.E.; Jordan, R. Novel Benzoxazole Inhibitor of Dengue Virus Replication That Targets the NS3 Helicase. Antimicrobial Agents and Chemotherapy 2013, 57, 1902–1912. [Google Scholar] [CrossRef]
- Nobori, H.; Toba, S.; Yoshida, R.; Hall, W.W.; Sawa, H.; Sawa, H.; Sato, A. Identification of Compound-B, a Novel Anti-Dengue Virus Agent Targeting the Non-Structural Protein 4A. Antiviral Research 2018, 155, 60–66. [Google Scholar] [CrossRef]
- Nie, S.; Zhao, J.; Wu, X.; Yao, Y.; Wu, F.; Lin, Y.-L.; Li, X.; Kneubehl, A.R.; Vogt, M.B.; Rico-Hesse, R.; Song, Y. Synthesis, Structure-Activity Relationship and Antiviral Activity of Indole-Containing Inhibitors of Flavivirus NS2B-NS3 Protease. European Journal of Medicinal Chemistry 2021, 225, 113767. [Google Scholar] [CrossRef]
- Francesconi, V.; Rizzo, M.; Schenone, S.; Carbone, A.; Tonelli, M. State-of-The-Art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis. Current Medicinal Chemistry 2023, 31, 1955–1982. [Google Scholar] [CrossRef]
- Vázquez-Jiménez, L.K.; Juárez-Saldivar, A.; Gómez-Escobedo, R.; Delgado-Maldonado, T.; Méndez-Álvarez, D.; Palos, I.; Bandyopadhyay, D.; Gaona-Lopez, C.; Ortiz-Pérez, E.; Nogueda-Torres, B.; Ramírez-Moreno, E.; Rivera, G. Ligand-Based Virtual Screening and Molecular Docking of Benzimidazoles as Potential Inhibitors of Triosephosphate Isomerase Identified New Trypanocidal Agents. International Journal of Molecular Sciences 2022, 23, 10047. [Google Scholar] [CrossRef]
- Téllez-Valencia, A.; Ávila-Rı́os, S.; Pérez-Montfort, R.; Rodrı́guez-Romero, A.; Tuena de Gómez-Puyou, M.; López-Calahorra, F.; Gómez-Puyou, A. Highly Specific Inactivation of Triosephosphate Isomerase from Trypanosoma Cruzi. Biochemical and Biophysical Research Communications 2002, 295, 958–963. [Google Scholar] [CrossRef]
- Flores Sandoval, C.A.; Cuevas Hernández, R.I.; Correa Basurto, J.; Beltrán Conde, H.I.; Padilla Martínez, I.I.; Farfán García, J.N.; Nogueda Torres, B.; Trujillo Ferrara, J.G. Synthesis and Theoretic Calculations of Benzoxazoles and Docking Studies of Their Interactions with Triosephosphate Isomerase. Medicinal Chemistry Research 2012, 22, 2768–2777. [Google Scholar] [CrossRef]
- Choi, J.Y.; Calvet, C.M.; Gunatilleke, S.S.; Ruiz, C.; Cameron, M.D.; McKerrow, J.H.; Podust, L.M.; Roush, W.R. Rational Development of 4-Aminopyridyl-Based Inhibitors Targeting Trypanosoma Cruzi CYP51 as Anti-Chagas Agents. Journal of Medicinal Chemistry 2013, 56, 7651–7668. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Samano, S.; Villalobos-Rocha, J.C.; Enid Sanchez-Torres, L.; Nogueda-Torres, B.; Rivera, G.; Banik, B.K. A Practical Green Synthesis and Biological Evaluation of Benzimidazoles against Two Neglected Tropical Diseases: Chagas and Leishmaniasis. Current Medicinal Chemistry 2018, 24. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Meneses, R.; Castillo, R.; Hernández-Campos, A.; Maldonado-Rangel, A.; Matius-Ruiz, J.B.; Josué Trejo-Soto, P.; Nogueda-Torres, B.; Dea-Ayuela, M.A.; Bolás-Fernández, F.; Méndez-Cuesta, C.; Yépez-Mulia, L. In Vitro Activity of New N-Benzyl-1H-Benzimidazol-2-Amine Derivatives against Cutaneous, Mucocutaneous and Visceral Leishmania Species. Experimental Parasitology 2018, 184, 82–89. [Google Scholar] [CrossRef]
- De Luca, L.; Ferro, S.; Buemi, M.R.; Maria Monforte, A.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of Benzimidazole-BasedLeishmania MexicanaCysteine Protease CPB2.8ΔCTE Inhibitors as Potential Therapeutics for Leishmaniasis. Chemical Biology & Drug Design 2018, 92, 1585–1596. [Google Scholar] [CrossRef]
- da Silva, P.R.; de Oliveira, J.F.; da Silva, A.L.; Queiroz, C.M.; Feitosa, A.P.S.; Duarte, D.M.F.A.; da Silva, A.C.; de Castro, M.C.A.B.; Pereira, V.R.A.; da Silva, R.M.F.; Alves, L.C.; dos Santos, F.A.B.; de Lima, M.d.C.A. Novel Indol-3-Yl-Thiosemicarbazone Derivatives: Obtaining, Evaluation of in Vitro Leishmanicidal Activity and Ultrastructural Studies. Chemico-Biological Interactions 2020, 315, 108899. [Google Scholar] [CrossRef]
- Mahran, M.; William, S.; Ramzy, F.; Sembel, A. Synthesis and in Vitro Evaluation of New Benzothiazole Derivatives as Schistosomicidal Agents. Molecules 2007, 12, 622–633. [Google Scholar] [CrossRef]
- Mayoka, G.; Keiser, J.; Häberli, C.; Chibale, K. Structure–Activity Relationship and in Vitro Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Studies of N-Aryl 3-Trifluoromethyl Pyrido [1,2-A]Benzimidazoles That Are Efficacious in a Mouse Model of Schistosomiasis. ACS Infectious Diseases 2018, 5, 418–429. [Google Scholar] [CrossRef] [PubMed]
- El Bialy, S.A.; Taman, A.; El-Beshbishi, S.N.; Mansour, B.; El-Malky, M.; Bayoumi, W.A.; Essa, H.M. Effect of a Novel Benzimidazole Derivative in Experimental Schistosoma Mansoni Infection. Parasitology Research 2013, 112, 4221–4229. [Google Scholar] [CrossRef] [PubMed]
- Moreira, B.P.; Gava, S.G.; Haeberlein, S.; Gueye, S.; Santos, E.S.S.; Weber, M.H.W.; Abramyan, T.M.; Grevelding, C.G.; Mourão, M.M.; Falcone, F.H. Identification of Potent Schistosomicidal Compounds Predicted as Type II-Kinase Inhibitors against Schistosoma Mansoni C-Jun N-Terminal Kinase SMJNK. Frontiers in Parasitology 2024, 3. [Google Scholar] [CrossRef] [PubMed]
- Vernekar, S.K.V.; Qiu, L.; Zhang, J.; Kankanala, J.; Li, H.; Geraghty, R.J.; Wang, Z. 5′-Silylated 3′-1,2,3-Triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus. Journal of Medicinal Chemistry 2015, 58, 4016–4028. [Google Scholar] [CrossRef] [PubMed]
- Kumar Vishvakarma, V.; Shukla, N.; Kumari, K.; Patel, R.; Singh, P. A Model to Study the Inhibition of NsP2B-NsP3 Protease of Dengue Virus with Imidazole, Oxazole, Triazole Thiadiazole, and Thiazolidine Based Scaffolds. Heliyon 2019, 5, e02124. [Google Scholar] [CrossRef]
- Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Gadakh, B.; Chaltin, P.; Marchand, A.; Neyts, J.; Aerschot, A.V. Synthetic Strategy and Antiviral Evaluation of Diamide Containing Heterocycles Targeting Dengue and Yellow Fever Virus. European Journal of Medicinal Chemistry 2016, 121, 158–168. [Google Scholar] [CrossRef]
- Benmansour, F.; Eydoux, C.; Quérat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.-C.; Barral, K. Novel 2-Phenyl-5-[(E)-2-(Thiophen-2-Yl)Ethenyl]-1,3,4-Oxadiazole and 3-Phenyl-5-[(E)-2-(Thiophen-2-Yl)Ethenyl]-1,2,4-Oxadiazole Derivatives as Dengue Virus Inhibitors Targeting NS5 Polymerase. European Journal of Medicinal Chemistry 2016, 109, 146–156. [Google Scholar] [CrossRef]
- Hamdani, S.S.; Khan, B.A.; Hameed, S.; Batool, F.; Saleem, H.N.; Mughal, E.U.; Saeed, M. Synthesis and Evaluation of Novel S-Benzyl- and S-Alkylphthalimide- Oxadiazole -Benzenesulfonamide Hybrids as Inhibitors of Dengue Virus Protease. Bioorganic Chemistry 2020, 96, 103567. [Google Scholar] [CrossRef]
- Monteiro, M.; Curty Lechuga, G.; Lara, L.S.; Souto, B.A.; Viganò, M.; Cabral Bourguignon, S.; Calvet, C.M.; Oliveira, F.J.; Alves, C.; Souza-Silva, F.; José Santos, M.; Fernando, M. Synthesis, Structure-Activity Relationship and Trypanocidal Activity of Pyrazole-Imidazoline and New Pyrazole-Tetrahydropyrimidine Hybrids as Promising Chemotherapeutic Agents for Chagas Disease. European Journal of Medicinal Chemistry 2019, 182, 111610. [Google Scholar] [CrossRef]
- Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.-R. Novel 3-Nitro-1H-1,2,4-Triazole-Based Amides and Sulfonamides as Potential Antitrypanosomal Agents. Journal of medicinal chemistry 2012, 55, 5554–5565. [Google Scholar] [CrossRef]
- Campo, V.L.; Sesti-Costa, R.; Carneiro, Z.A.; Silva, J.S.; Schenkman, S.; Carvalho, I. Design, Synthesis and the Effect of 1,2,3-Triazole Sialylmimetic Neoglycoconjugates on Trypanosoma Cruzi and Its Cell Surface Trans-Sialidase. Bioorganic & Medicinal Chemistry 2012, 20, 145–156. [Google Scholar] [CrossRef]
- Fernandes, F.S.; Santos, H.; Lima, S.R.; Conti, C.; Rodrigues, M.T.; Zeoly, L.A.; Leonardo; Krogh, R.; Andricopulo, A.D.; Coelho, F. Discovery of Highly Potent and Selective Antiparasitic New Oxadiazole and Hydroxy-Oxindole Small Molecule Hybrids. European Journal of Medicinal Chemistry 2020, 201, 112418. [Google Scholar] [CrossRef] [PubMed]
- Ricardo Teixeira, R.; Rodrigues, A.; Socorro, A.; Paula, M.; Rossi Bergmann, B.; Salgado Ferreira, R.; Vaz, B.G.; Vasconcelos, G.A.; Luís, W. Synthesis and Leishmanicidal Activity of Eugenol Derivatives Bearing 1,2,3-Triazole Functionalities. European Journal of Medicinal Chemistry 2018, 146, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.R.; Asrondkar, A.; Patil, V.; Sangshetti, J.N.; Kalam Khan, F.A.; Damale, M.G.; Patil, R.H.; Bobade, A.S.; Shinde, D.B. Antileishmanial Potential of Fused 5-(Pyrazin-2-Yl)-4H-1,2,4-Triazole-3-Thiols: Synthesis, Biological Evaluations and Computational Studies. Bioorganic & Medicinal Chemistry Letters 2017, 27, 3845–3850. [Google Scholar] [CrossRef]
- Cleghorn, L.A.T.; Woodland, A.; Collie, I.T.; Torrie, L.S.; Norcross, N.; Luksch, T.; Mpamhanga, C.; Walker, R.G.; Mottram, J.C.; Brenk, R.; Frearson, J.A.; Gilbert, I.H.; Wyatt, P.G. Identification of Inhibitors of the Leishmania Cdc2-Related Protein Kinase CRK3. ChemMedChem 2011, 6, 2214–2224. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A. Pyrazole: An Emerging Privileged Scaffold in Drug Discovery. Future Medicinal Chemistry 2023, 15, 2011–2023. [Google Scholar] [CrossRef]
- Dai, J.; Tian, S.; Yang, X.; Liu, Z. Synthesis Methods of 1,2,3-/1,2,4-Triazoles: A Review. Frontiers in Chemistry 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Sahiba, N.; Teli, S.; Teli, P.; Kumar Agarwal, L.; Agarwal, S. Advances in the Synthetic Strategies of Benzoxazoles Using 2-Aminophenol as a Precursor: An Up-To-Date Review. RSC Advances 2023, 13, 24093–24111. [Google Scholar] [CrossRef] [PubMed]
- Bowman, W.R.; Bridge, C.F.; Brookes, P. Synthesis of Heterocycles by Radical Cyclisation. Journal of the Chemical Society, Perkin Transactions 1 2000, 1, 1–14. [Google Scholar] [CrossRef]
- Lu, S.-H.; Liu, P.-L.; Wong, F.F. Vilsmeier Reagent-Mediated Synthesis of 6-[(Formyloxy)Methyl]-Pyrazolopyrimidines via a One-Pot Multiple Tandem Reaction. RSC Advances 2015, 5, 47098–47107. [Google Scholar] [CrossRef]
- Chahal, M.; Dhillon, S.; Rani, P.; Kumari, G.; Kumar Aneja, D.; Kinger, M. Unravelling the Synthetic and Therapeutic Aspects of Five, Six and Fused Heterocycles Using Vilsmeier–Haack Reagent. RSC Advances 2023, 13, 26604–26629. [Google Scholar] [CrossRef]
- Anastas, P.T.; Kirchhoff, M.M. Origins, Current Status, and Future Challenges of Green Chemistry†. Accounts of Chemical Research 2002, 35, 686–694. [Google Scholar] [CrossRef]
- Tucker, J.L. Green Chemistry, a Pharmaceutical Perspective. Organic Process Research & Development 2006, 10, 315–319. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry. Oxford University Press eBooks 2000, 1. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Zimmerman, J.B.; Winter, T.M.d.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; Pincus, L.N.; Falinski, M.M.; Shi, W.; Coish, P.; Plata, D.L.; Anastas, P.T. The Green ChemisTREE: 20 Years after Taking Root with the 12 Principles. Green Chemistry 2018, 20, 1929–1961. [Google Scholar] [CrossRef]
- Dayanand Katre, S. Microwaves in Organic Synthetic Chemistry-A Greener Approach to Environmental Protection: An Overview. Asian Journal of Green Chemistry 2024, 8, 68–80. [Google Scholar] [CrossRef]
- Tiwari, S.; Talreja, S. Green Chemistry and Microwave Irradiation Technique: A Review. Journal of Pharmaceutical Research International 2022, 34, 74–79. [Google Scholar] [CrossRef]
- Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Accounts of Chemical Research 2014, 47, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Chatel, G.; Varma, R.S. Ultrasound and Microwave Irradiation: Contributions of Alternative Physicochemical Activation Methods to Green Chemistry. Green Chemistry 2019, 21, 6043–6050. [Google Scholar] [CrossRef]
- Farmani, H.R.; Mosslemin, M.H.; Sadeghi, B. Microwave-Assisted Green Synthesis of 4,5-Dihydro-1H-Pyrazole-1-Carbothioamides in Water. Molecular Diversity 2018, 22, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Algul, O.; Kaessler, A.; Apcin, Y.; Yilmaz, A.; Jose, J. Comparative Studies on Conventional and Microwave Synthesis of Some Benzimidazole, Benzothiazole and Indole Derivatives and Testing on Inhibition of Hyaluronidase. Molecules 2008, 13, 736–748. [Google Scholar] [CrossRef]
- Mohamed Al-Zaydi, K. A Simplified Green Chemistry Approaches to Synthesis of 2-Substituted 1,2,3-Triazoles and 4-Amino-5-Cyanopyrazole Derivatives Conventional Heating versus Microwave and Ultrasound as Ecofriendly Energy Sources. Ultrasonics Sonochemistry 2009, 16, 805–809. [Google Scholar] [CrossRef]
- Patil, S.A.; Patil, R.; Miller, D.D. Microwave-Assisted Synthesis of Medicinally Relevant Indoles. Current Medicinal Chemistry 2011, 18, 615–637. [Google Scholar] [CrossRef] [PubMed]
- Chui, W.-K.; Dolzhenko, A.V.; Dolzhenko, A.V. Microwave-Assisted Synthesis ofS-Triazino [2,1-B][1,3]Benzoxazoles,S-Triazino [2,1-B][1,3]Benzothiazoles, andS-Triazino [1,2-A]Benzimidazoles. Synthesis 2006, 2006, 597–602. [Google Scholar] [CrossRef]
- Cintas, P.; Luche, J.-L. Green Chemistry. Green Chemistry 1999, 1, 115–125. [Google Scholar] [CrossRef]
- Chatel, G. How Sonochemistry Contributes to Green Chemistry? Ultrasonics Sonochemistry 2018, 40, 117–122. [Google Scholar] [CrossRef]
- Rock, J.; Garcia, D.; Espino, O.; Shetu, S.A.; Chan-Bacab, M.J.; Moo-Puc, R.; Patel, N.B.; Rivera, G.; Bandyopadhyay, D. Benzopyrazine-Based Small Molecule Inhibitors as Trypanocidal and Leishmanicidal Agents: Green Synthesis, in Vitro, and in Silico Evaluations. Frontiers in Chemistry 2021, 9. [Google Scholar] [CrossRef]
- Biedermann, N.; Schnürch, M. Advances in Mechanochemical Methods for One--Pot Multistep Organic Synthesis. Chemistry – A European Journal 2025, 31. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, C.; Yu, L.; Hou, H.; Sun, W.; Fang, K. Synthesis of Benzimidazole by Mortar–Pestle Grinding Method. Green Chemistry Letters and Reviews 2021, 14, 612–619. [Google Scholar] [CrossRef]
- EL-Sayed, T.; Aboelnaga, A.; Hagar, M. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives. Molecules 2016, 21, 1111. [Google Scholar] [CrossRef]
- Kaur, R.; Kumar, K. Synthetic and Medicinal Perspective of Quinolines as Antiviral Agents. European Journal of Medicinal Chemistry 2021, 215, 113220. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, F.; Asirib, A.M.; Marwanib, H.M.; Zhang, Z. FeCl3--Mediated One--Pot Cyclization–Aromatization of Anilines, Benzaldehydes, and Phenylacetylenes under Ball Milling: A New Alternative for the Synthesis of 2,4--Diphenylquinolines. Journal of the Chinese Chemical Society 2017, 65, 65–73. [Google Scholar] [CrossRef]
- Dwivedi, J.; Jaiswal, S.; Kapoor, D.U.; Sharma, S. Catalytic Application of Ionic Liquids for the Green Synthesis of Aromatic Five-Membered Nitrogen Heterocycles. Catalysts 2025, 15, 931. [Google Scholar] [CrossRef]
- A A Mohamed, M.; Kadry, A.M.; Bekhit, S.A.; A S Abourehab, M.; Amagase, K.; Ibrahim, T.M.; M M El-Saghier, A.; Bekhit, A.A. Spiro Heterocycles Bearing Piperidine Moiety as Potential Scaffold for Antileishmanial Activity: Synthesis, Biological Evaluation, and in Silico Studies. Journal of Enzyme Inhibition and Medicinal Chemistry 2022, 38, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Mitra, A.K. Ionic Liquid-Assisted Approaches in the Synthesis of Nitrogen-Containing Heterocycles: A Focus on 3- to 6-Membered Rings. Journal of Ionic Liquids 2025, 5, 100146. [Google Scholar] [CrossRef]
- Shokri, A.; Abastabar, M.; Keighobadi, M.; Emami, S.; Fakhar, M.; Teshnizi, S.H.; Makimura, K.; Rezaei-Matehkolaei, A.; Mirzaei, H. Promising Antileishmanial Activity of Novel Imidazole Antifungal Drug Luliconazole against Leishmania Major: In Vitro and in Silico Studies. Journal of Global Antimicrobial Resistance 2018, 14, 260–265. [Google Scholar] [CrossRef]
- Shirole, G.D.; Kadnor, V.A.; Tambe, A.S.; Shelke, S.N. Brønsted-Acidic Ionic Liquid: Green Protocol for Synthesis of Novel Tetrasubstituted Imidazole Derivatives under Microwave Irradiation via Multicomponent Strategy. Research on Chemical Intermediates 2016, 43, 1089–1098. [Google Scholar] [CrossRef]
- Domingues, L.; Duarte, A.R.C.; Jesus, A.R. How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals 2024, 17, 221. [Google Scholar] [CrossRef]
- Truong, V.A.; Tran, M.H.; Nguyen, T.H.; Nguyen, H.T. Deep Eutectic Solvent as a Green Catalyst for the One-Pot Multicomponent Synthesis of 2-Substituted Benzothiazole Derivatives. RSC Advances 2024, 14, 39462–39471. [Google Scholar] [CrossRef]
- Perrone, S.; Messa, F.; Troisi, L.; Salomone, A. N-, O- and S-Heterocycles Synthesis in Deep Eutectic Solvents. Molecules 2023, 28, 3459. [Google Scholar] [CrossRef] [PubMed]
- Falcini, C.; Gonzalo, G.d. Deep Eutectic Solvents as Catalysts in the Synthesis of Active Pharmaceutical Ingredients and Precursors. Catalysts 2024, 14, 120. [Google Scholar] [CrossRef]
- Mahran, M.; William, S.; Ramzy, F.; Sembel, A. Synthesis and in Vitro Evaluation of New Benzothiazole Derivatives as Schistosomicidal Agents. Molecules 2007, 12, 622–633. [Google Scholar] [CrossRef]
- Velásquez-Torres, M.; Trujillo-Ferrara, J.G.; Godínez-Victoria, M.; Jarillo-Luna, R.A.; Tsutsumi, V.; Sánchez-Monroy, V.; Posadas-Mondragón, A.; Cuevas-Hernández, R.I.; Santiago-Cruz, J.A.; Pacheco-Yépez, J. Riluzole, a Derivative of Benzothiazole as a Potential Anti-Amoebic Agent against Entamoeba Histolytica. Pharmaceuticals 2023, 16, 896. [Google Scholar] [CrossRef] [PubMed]
- Delmas, F.; Di Giorgio, C.; Robin, M.; Azas, N.; Gasquet, M.; Detang, C.; Costa, M.; Timon-David, P.; Galy, J.-P. In Vitro Activities of Position 2 Substitution-Bearing 6-Nitro- and 6-Amino-Benzothiazoles and Their Corresponding Anthranilic Acid Derivatives againstLeishmania InfantumandTrichomonas Vaginalis. Antimicrobial Agents and Chemotherapy 2002, 46, 2588–2594. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
