Submitted:
03 October 2025
Posted:
06 October 2025
You are already at the latest version
Abstract
Keywords:
Background
Microplastic Properties that Promote V. cholerae Growth
Microplastics as Active Modifiers of V. cholerae Physiology
Case Study: The Oder River and Rapid Pathogen Enrichment
Microplastics and Antimicrobial Resistance in Cholera Contexts
Implications for Cholera Endemic Regions
Conclusions
Conflict of Interest
References
- Cholewińska, P.; Moniuszko, H.; Wojnarowski, K.; Pokorny, P.; Szeligowska, N.; Dobicki, W.; Polechoński, R.; Górniak, W. The occurrence of microplastics and the formation of biofilms by pathogenic and opportunistic bacteria as threats in aquaculture. International Journal of Environmental Research and Public Health 2022, 19, 8137. [Google Scholar] [CrossRef] [PubMed]
- Cholewińska, P.; Wojnarowski, K.; Szeligowska, N.; Pokorny, P.; Hussein, W.; Hasegawa, Y.; Dobicki, W.; Palić, D. Presence of microplastic particles increased abundance of pathogens and antimicrobial resistance genes in microbial communities from the Oder river water and sediment. Scientific Reports 2025, 15, 16338. [Google Scholar] [CrossRef]
- Gu, T.; Liu, Y.; Wang, Y.; Zheng, H.; Chen, L. Distinct impact of polystyrene microplastics on six species of common pathogenic and probiotic bacteria and their boosting support to Vibrio cholerae proliferation. Environ. Sci.: Processes Impacts 2025, 27, 2353–2366. [Google Scholar] [CrossRef]
- Guo, W.; Li, D.; Chen, B.; Li, J.; Li, Z.; Cao, X.; Qiu, H.; Zhao, L. Microbial colonization on four types of microplastics to form biofilm differentially affecting organic contaminant biodegradation. Chemical Engineering Journal 2025, 503, 158060. [Google Scholar] [CrossRef]
- Hossain, M.R.; Jiang, M.; Wei, Q.; Leff, L.G. Microplastic surface properties affect bacterial colonization in freshwater. Journal of Basic Microbiology 2019, 59, 54–61. [Google Scholar] [CrossRef]
- Jaafarzadeh Haghighi Fard, N.; Ahmadi, H.; Hajizadeh, Y.; Ramezani, Z.; Eslami, H. Antibiotic resistance genes associated with microplastics in aquatic environments: A systematic review. Science of the Total Environment 2025, 927, 171102. [Google Scholar]
- Jiang, C.; Almuhtaram, H.; McKie, M.J.; Andrews, R.C. Assessment of biofilm growth on microplastics in freshwaters using a passive flow-through system. Toxics 2023, 11. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Mudenda, H.; Yamamoto, H. The survival of Vibrio cholerae in the natural environment of Zambia: Fish, the suspicious gateway of cholera outbreak? Journal of International Health 2010, 33–39. [Google Scholar]
- Li, W.; Zeng, J.; Zheng, N.; Ge, C.; Li, Y.; Yao, H. Polyvinyl chloride microplastics in the aquatic environment enrich potential pathogenic bacteria and spread antibiotic resistance genes in the fish gut. Journal of Hazardous Materials 2024, 475, 134817. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Fang, S.; Zhang, T.; Zhu, L.; Dong, H. Microplastics as hotspots of antibiotic resistance genes: Implications for human health. Journal of Hazardous Materials 2021, 402, 123576. [Google Scholar]
- Luque Fernández, M.Á.; Bauernfeind, A.; Jiménez, J.D.; Gil, C.L.; Omeiri, N.E.; Guibert, D.H. Influence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003–2006: Analysis of a time series. Transactions of The Royal Society of Tropical Medicine and Hygiene 2009, 103, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Paz, S. Impact of temperature variability on cholera incidence in Southeastern Africa, 1971–2006. EcoHealth 2009, 6, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, E.A.; Fonvielle, J.A.; Cottingham, S.; Zhang, Y.; Dittmar, T.; Aldridge, D.C.; Tanentzap, A.J. Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nature Communications 2022, 13, 4175. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho Paulo de Souza Costa, D.; Destro, M.T.; Franco, B.D.G.M.; Landgraf, M. Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of São Paulo State, Brazil. Applied and Environmental Microbiology 2010, 76, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Stabnikova, O.; Stabnikov, V.; Marinin, A.; Klavins, M.; Klavins, L.; Vaseashta, A. Microbial life on the surface of microplastics in natural waters. Applied Sciences 2021, 11, 11692. [Google Scholar] [CrossRef]
- Vezzulli, L.; Brettar, I.; Pezzati, E.; Reid, P.C.; Colwell, R.R.; Höfle, M.G.; Pruzzo, C. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. The ISME Journal 2012, 6, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, Y.; Wang, Z.; Luo, X.; Peng, Y. Microplastics in the environment: A critical review of their distribution, interactions with microbes and antibiotic resistance genes. Environment International 2023, 172, 107813. [Google Scholar]
- Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W.; Chen, L. Investigation of microplastics as vectors for antibiotic resistance genes and pathogens in water and sediment samples. Science of the Total Environment 2023, 768, 144526. [Google Scholar]
- Yuan, Z.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment – From marine to food systems. Science of the Total Environment 2022, 823, 153730. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
