Submitted:
02 October 2025
Posted:
03 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Mathematical Equations of TPMS Lattices
2.2. Geometric Modelling and Boundary Conditions
2.3. Governing Equations
2.4. Meshing Independence Methods
3. Results and Discussion
3.1. Fluid Flow Characteristics
3.2. Effects of Porosity on the Temperature Distribution Across the Channel Length
3.3. Logmean Temperature Difference (LMTD) in the Heat Sink
3.4. Pressure Gradient in Different HS Geometries
3.5. Local Nusselt Number Distribution Along Channel Length
4. Conclusions
- 1)
- The average Nusselt number of the gyroid, primitive and wavy heat sink model decreases along the channel length due to the rising local temperature.
- 2)
- A TPMS heat sink with 0.7 porosity exhibits balanced hydraulic and better cooling performance in the heat sink analysis.
- 3)
- The temperature of TPMS increased in the fluid flow direction as the heat flux from the bottom plate increased from 4 [W/cm2] to 12 [W/cm2].
- 4)
- For the similar inlet parameters i.e. porosity, permeability, inlet velocity and inlet temperature, the gyroid HS model exhibits the highest Nusselt number compared to primitive and wavy structures. This promotes high fluid mixing and effective heat removal. This research summarised potential TPMS lattice in electronic thermal management, but further study is required to address challenges with thermal performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, W.; Zhou, H.; Zeng, Y.; Yan, M.; Jiang, C.; Yang, P.; et al. Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp. Int J Heat Mass Transf. 2023, 201, 123642. [Google Scholar] [CrossRef]
- Gaikwad, A.; Sathe, A.; Sanap, S. A design approach for thermal enhancement in heat sinks using different types of fins: A review. Front Therm Eng. 2023, 2, 980985. [Google Scholar] [CrossRef]
- Behnia, M.; Copeland, D.; Soodphakdee, D. A comparison of heat sink geometries for laminar forced convection: Numerical simulation of periodically developed flow. In IEEE. 1998; 310–315. [Google Scholar] [CrossRef]
- Wang, Q.; Tao, J.; Cui, Z.; Zhang, T.; Chen, G. Numerical simulation of fluid and heat transfer characteristics of microchannel heat sink with fan-shaped grooves and triangular truncated ribs. Int Commun Heat Mass Transf. 2024, 155, 107580. [Google Scholar] [CrossRef]
- Zohora, FT.; Haque, MR.; Haque, MM. Numerical investigation of the hydrothermal performance of novel pin-fin heat sinks with hyperbolic, wavy, and crinkle geometries and various perforations. Int. J. Therm. Sci. 2023, 194, 108578. [Google Scholar] [CrossRef]
- Manisa, IW.; Abhishek, SS. Analysis of Fins with Varying Shapes for their thermal behavior in heat sink: A Review. Int J Adv Eng Manag IJAEM. 2022, 4, 1267–79. [Google Scholar] [CrossRef]
- Soodphakdee, D.; Behnia, M.; Copeland, DW. A comparison of fin geometries for heatsinks in laminar forced convection: Part I-round, elliptical, and plate fins in staggered and in-line configurations. Int J Microcircuits Electron Packag. 2001, 24, 68–76. [Google Scholar]
- Jajja, SA.; Ali, W.; Ali, HM.; Ali, AM. Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Appl Therm Eng. 2014, 64, 76–82. [Google Scholar] [CrossRef]
- Yaseen, SJ. Numerical study of the fluid flow and heat transfer in a finned heat sink using Ansys Icepak. Open Eng. 2023, 13, 20220440. [Google Scholar] [CrossRef]
- Mrozek, A.; Strek, T. Numerical Analysis of Dynamic Properties of an Auxetic Structure with Rotating Squares with Holes. Materials. 2022, 15, 8712. [Google Scholar] [CrossRef]
- Mrozek-Czajkowska, A.; Stręk, T. Design Optimization of the Mechanics of a Metamaterial-Based Prosthetic Foot. Materials. 2024, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Ren, X.; Zhang, Y.; Zhang, X.Y.; Zhang, X.G.; Luo, C.; Xie, Y.M. Lightweight auxetic metamaterials: Design and characteristic study. Compos. Struct. 2022, 293, 115706. [Google Scholar] [CrossRef]
- Novak, N.; Vesenjak, M.; Kennedy, G.; Thadhani, N.; Ren, Z. Response of Chiral Auxetic Composite Sandwich Panel to Fragment Simulating Projectile Impact. Phys. Status Solidi. 2019, 257, 1900099. [Google Scholar] [CrossRef]
- Burlaga, B.; Kroma, A.; Poszwa, P.; Kłosowiak, P.; Popielarski, P.; Stręk, T. Heat Transfer Analysis of 3D Printed Wax Injection Mold Used in Investment Casting. Materials. 2022, 15, 6545. [Google Scholar] [CrossRef]
- Grima-Cornish, J.N.; Attard, D.; Grima, J.N.; Evans, K.E. Auxetic Behavior and Other Negative Thermomechanical Properties from Rotating Rigid Units. Phys. Status Solidi RRL. 2022, 16, 2100322. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Rovira, M.; Duwig, C. Design analysis of the “Schwartz D” based heat exchanger: A numerical study. Int J Heat Mass Transf. 2021, 177, 121415. [Google Scholar] [CrossRef]
- Yeranee, K.; Rao, Y. A review of recent investigations on flow and heat transfer enhancement in cooling channels embedded with triply periodic minimal surfaces (TPMS). Energies 2022, 15, 8994. [Google Scholar] [CrossRef]
- Singh, A.; Al-Ketan, O.; Karathanasopoulos, N. Mechanical performance of solid and sheet network-based stochastic interpenetrating phase composite materials. Compos Part B Eng. 2023, 251, 110478. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, D.; Oo, K.; McCrimmon, TL.; Bai, S. Design and Additive Manufacturing of TPMS Heat Exchangers. Appl Sci. 2024, 14, 3970. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Z.; Dai, M.; Song, B.; Yang, B.; Zhang, T.; et al. Fluid Flow and Heat Transfer Performances of Aluminum Alloy Lattices with Triply Periodic Minimal Surfaces. Materials. 2025, 18, 1407. [Google Scholar] [CrossRef]
- Baobaid, N.; Ali, MI.; Khan, KA.; Al-Rub, RKA. Fluid flow and heat transfer of porous TPMS architected heat sinks in free convection environment. Case Stud Therm Eng. 2022, 33, 101944. [Google Scholar] [CrossRef]
- Oh, SH.; Kim, JE.; Jang, CH.; Kim, J.; Park, CY.; Park, K. Multifunctional gradations of TPMS architected heat exchanger for enhancements in flow and heat exchange performances. Sci Rep. 2025, 15, 19931. [Google Scholar] [CrossRef] [PubMed]
- Beer, M.; Rybár, R. Numerical Study of Fluid Flow in a Gyroid-Shaped Heat Transfer Element. Energies. 2024, 17, 2244. [Google Scholar] [CrossRef]
- Barakat, A.; Sun, B. Controlling TPMS lattice deformation for enhanced convective heat transfer: A comparative study of Diamond and Gyroid structures. Int Commun Heat Mass Transf. 2024, 154, 107443. [Google Scholar] [CrossRef]
- Beer, M.; Rybár, R. Optimisation of Heat Exchanger Performance Using Modified Gyroid-Based TPMS Structures. Processes. 2024, 12, 2943. [Google Scholar] [CrossRef]
- Tang, W.; Guo, J.; Yang, F.; Zeng, L.; Wang, X.; Liu, W.; et al. Performance analysis and optimization of the Gyroid-type triply periodic minimal surface heat sink incorporated with fin structures. Appl Therm Eng. 2024, 255, 123950. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Ali, M.; Khalil, M.; Rowshan, R.; Khan, K.A.; Abu, Al-Rub RK. Forced convection computational fluid dynamics analysis of architected and three-dimensional printable heat sinks based on triply periodic minimal surfaces. J Therm Sci Eng Appl. 2021; 13, 021010. [Google Scholar] [CrossRef]
- Al-Ketan O; Abu Al-Rub RK. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mat Design Process Comm. 2021, 3, e205. [CrossRef]
- Dutkowski, K.; Kruzel, M.; Rokosz, K. Review of the state-of-the-art uses of minimal surfaces in heat transfer. Energies. 2022, 15, 7994. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, J.; Lu, G.; Wang, XD.; Yan, WM. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. Int J Therm Sci. 2017, 118, 423–34. [Google Scholar] [CrossRef]
- Small, E.; Sadeghipour, SM.; Asheghi, M. Heat sinks with enhanced heat transfer capability for electronic cooling applications. J. Electron. Packag. 2006. [CrossRef]
- Bayomy, AM.; Saghir, Z. Thermal performance of finned aluminum heat sink filled with ERG aluminum foam: Experimental and numerical approach. Int J Energy Res. 2020, 44, 4411–25. [Google Scholar] [CrossRef]
- Bayomy, A.; Saghir, M. Experimental and Numerical Study of the Heat Transfer Characteristics of Aluminium Metal Foam (with/without channels) Subjected to Steady Water Flow. Pertanika J Sci Technol. 2017, 25. [Google Scholar]
- Barakat, A.; Pan, Y.; Sun, B. Comparative Heat Transfer Performance of TPMS Structures: Spotlight on Fisch Koch S versus Gyroid, Diamond and SplitP Lattices. EDP Sciences, 2024; 01009. [Google Scholar] [CrossRef]
- Arshad, A.; Saeed, M.; Ikhlaq, M.; Imran, M.; Yan, Y. Heat and fluid flow analysis of micro-porous heat sink for electronics cooling: Effect of porosities and pore densities. Therm Sci Eng Prog. 2025, 57, 103129. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, F.; Jia, H.; Zhao, Z.; Wang, P.; Duan, S.; et al. Conformal geometric design and additive manufacturing for special-shaped TPMS heat exchangers. Int J Heat Mass Transf. 2025, 247, 127146. [Google Scholar] [CrossRef]
- Saghir, MZ.; Rahman, MM. Effectiveness in Cooling a Heat Sink in the Presence of a TPMS Porous Structure Comparing Two Different Flow Directions. Fluids. 2024, 9, 297. [Google Scholar] [CrossRef]












| Type | SA | SA to V ratio | Lattice length, [mm] |
|---|---|---|---|
| Primitive | 4288 | 2.32 | 15 x 15 x 30 |
| Gyroid | 5183 | 2.82 | |
| Wavy fin | 9496 | 1.86 |
| Boundary | Temperature | Velocity | Pressure |
|---|---|---|---|
| Inlet | Tin = 293.15 [K] |
|
- |
| Outlet | - | - | . |
| Materials | Thermal conductivity [W/(m K)] | Density [kg/m3] | Specific heat capacity [J/(kg K)] | Dynamic viscosity [kg/(m s)] |
|---|---|---|---|---|
| Copper | 400 | 8960 | 385 | - |
| Aluminium | 238 | 2700 | 900 | - |
| Water | 0.6 | 997 | 4182 | 0.89e-03 |
| Mesh size | Domain elements | Boundary elements |
Edge elements |
Average Nusselt number |
|---|---|---|---|---|
| Extra coarser | 20866 | 4813 | 693 | 52.3 |
| Coarser | 27225 | 5901 | 786 | 54.9 |
| Normal | 114512 | 14175 | 1228 | 60.9 |
| Fine | 195069 | 21295 | 1532 | 61.7 |
| Finer | 504487 | 39930 | 2101 | 63.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
