Submitted:
01 October 2025
Posted:
01 October 2025
Read the latest preprint version here
Abstract

Keywords:
1. Introduction
1.1. Context of Chaotic Dynamics
2. Methodology
2.1. Model and Control
2.2. Simulation and Perturbations
2.3. Systemic Tau Computation
3. Results
| Step | Master State () | Slave State () | Divergence Notes |
|---|---|---|---|
| 1000 | Opposite signs in x, y indicate anti-sync | ||
| 3000 | Persistent anti-phase behavior | ||
| 4500 | Weakening divergence, clip bound effect |



4. Discussion
5. Conclusions
Appendix A. Simulation Code



Appendix B. Extended Formulations of Systemic Tau
Appendix B.1. Weighted Systemic Tau (τ s w )
Appendix B.1.1. Formulation
Appendix B.1.2. Derivation
Appendix B.1.3. Applications
Appendix B.2. Fractional Systemic Tau (τ s α )
Appendix B.2.1. Formulation
Appendix B.2.2. Derivation
Appendix B.2.3. Applications
Appendix B.3. Noise-Adjusted Systemic Tau (τ s n )
Appendix B.3.1. Formulation
Appendix B.3.2. Derivation
Appendix B.3.3.1. Applications
Appendix B.4. Time-Varying Systemic Tau (τ s t )
Appendix B.4.1. Formulation
Appendix B.4.2. Derivation
Appendix B.4.3. Applications
Appendix B.5. Applications
References
- Padilla-Villanueva, J. Validation of Anti-Synchronization in Chaotic Systems Using Systemic Tau. Preprints 2025, 28 September 2025. [CrossRef]
- Padilla-Villanueva, J. Unveiling Systemic Tau. Preprints 2025, 28 September 2025. [CrossRef]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems . Phys. Rev. Lett. 1990, 64, 821; [Google Scholar] [CrossRef]
- Mainieri, R.; Rehacek, J. Projective synchronization in three-dimensional chaotic systems . Phys. Rev. Lett. 1999, 82, 3042; [Google Scholar] [CrossRef]
- Martinez-Fuentes, O. et al. Time-Delay Fractional Variable Order Adaptive Synchronization... Fractal Fract. 2023, 7, 4; [Google Scholar] [CrossRef]
- Li, Z. et al. Control and Synchronization of the Fractional-Order Lorenz... Int. J. Mod. Phys. C 2013, 24, 1350059; [Google Scholar] [CrossRef]
- Chen, L. et al. Chaotic synchronization based on fractional order calculus financial system. Chaos Solitons Fractals 2020, 130, 109410; [Google Scholar] [CrossRef]
- Mahmoud, G.M. et al Stability and Stabilizing of Fractional Complex Lorenz Systems. Abstract Appl. Anal. 2013, 2013, 127103; [Google Scholar] [CrossRef]
- Bhalekar, S. Synchronization of different fractional-order chaotic systems . .. Chaos Solitons Fractals 2016, 83, 109; [Google Scholar] [CrossRef]
- Al-Sawalha, M.M. Antisynchronization of Nonidentical Fractional-Order Chaotic Systems . .. Int. J. Differ. Equ. 2011, 2011, 250763; [Google Scholar] [CrossRef]
- Zhang, F. et al. Anti-Synchronization of a Class of Chaotic Systems... Symmetry 2019, 11, 822; [Google Scholar] [CrossRef]
- Odibat, Z. Adaptive synchronization of fractional Lorenz systems . .. Nonlinear Dyn. 2016, 85, 2699; [Google Scholar] [CrossRef]
- Mahmoud, G.M. et al. Anti-synchronization of fractional-order chaotic complex systems... J. Nonlinear Sci. Appl. 2017, 10, 5770; [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
