Submitted:
01 October 2025
Posted:
01 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
3. Results And Discussion
4. Conclusions
5. TABLES
| Performance Metric | Proposed System | Waste Shark | Seabin | Trawler Vessel |
| Maximum Operating Depth (m) | 100 | 1 | 0.5 | 5 |
| Collection Rate (kg/h) | 2.0 | 0.8 | 0.3 | 15.0 |
| Energy Consumption (kWh/kg) | 0.5 | 1.2 | 2.8 | 8.5 |
| Micro plastic Detection | Yes | No | No | No |
| Minimum Particle Size (mm) | 0.1 | 10 | 5 | 50 |
| Operational Cost ($/kg) | 0.7 | 1.5 | 2.2 | 0.4 |
| Carbon Emissions (kg CO₂/kg) | 0.0 | 0.15 | 0.22 | 1.8 |
| Bycatch Rate (%) | 0.0 | 0.0 | 0.0 | 12.5 |
| Detection Accuracy (%) | 92 | N/A | N/A | N/A |
| Energy Source | Solar/Current | Battery | Grid | Diesel |
| Parameter | Value | Unit | Testing Method |
| Material Composition | Silicone-Graphene | - | Spectroscopy |
| Elastomer Thickness | 2.0 | mm | Micrometer |
| Young's Modulus | 0.10 | MPa | Tensile Test |
| Maximum Strain Capacity | 300 | % | Cyclic Loading |
| Mooney-Rivlin C₁₀ | 34 | kPa | Biaxial Test |
| Mooney-Rivlin C₀₁ | 8 | kPa | Biaxial Test |
| Diaphragm Radius | 80 | mm | Direct Measurement |
| Suction Cycle Duration | 0.5 | seconds | High-Speed Camera |
| Transfer Cycle Duration | 0.3 | seconds | High-Speed Camera |
| Minimum Chamber Pressure | 0.70 | atm | Pressure Transducer |
| Maximum Chamber Pressure | 1.20 | atm | Pressure Transducer |
| Volume Range | 0.5-1.5 | liters | Volumetric Calibration |
| Actuator Force | 200 | N | Load Cell |
| Actuator Power | 10 | W | Power Meter |
| Cycle Life (tested) | 10,000 | cycles | Fatigue Testing |
| Metric | Training | Validation | Field Testing | Method |
| Overall Accuracy (%) | 94.2 | 92.1 | 89.7 | Confusion Matrix |
| Precision (%) | 93.8 | 91.5 | 88.2 | True Pos / Predicted Pos |
| Recall (%) | 92.5 | 90.8 | 87.5 | True Pos / Actual Pos |
| F1-Score | 0.932 | 0.912 | 0.878 | Harmonic Mean |
| Intersection over Union | 0.875 | 0.850 | 0.812 | Area Overlap |
| Processing Time (ms) | 85 | 92 | 98 | GPU Profiling |
| False Positive Rate (%) | 4.2 | 5.8 | 7.3 | False Pos / Total |
| False Negative Rate (%) | 5.5 | 6.9 | 8.8 | False Neg / Total |
| Frames Per Second | 11.8 | 10.9 | 10.2 | Throughput Measurement |
| Power Consumption (W) | 12 | 12 | 15 | Power Meter |
References
- UNEP. (2021). From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution. United Nations Environment Programme, Nairobi.
- Lebreton, L. , Slat, B. , Ferrari, F., et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports 2018, 8, 4666. [Google Scholar]
- Lauder, G. V. , & Tytell, E. D. (2006). Hydrodynamics of undulatory propulsion. In Fish Biomechanics (pp. 425-468). Academic Press.
- Muller, M. , Osse, J. W., & Verhagen, J. H. A quantitative hydrodynamical model of suction feeding in fish. Journal of Theoretical Biology 1982, 95, 49–79. [Google Scholar]
- Day, S. W. , Higham, T. E., Cheer, A. Y., & Wainwright, P. C. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by particle image velocimetry. Journal of Experimental Biology 2005, 208, 2661–2671. [Google Scholar]
- Patel, S. , & Kim, S. Adaptive suction mechanisms in bio-inspired robotics. Journal of Mechanical Design 2019, 141, 071404. [Google Scholar]
- Lu, Y. , Zhang, L., & Xie, W. Deep learning for marine debris detection: A survey. IEEE Transactions on Neural Networks and Learning Systems 2022, 33, 2208–2224. [Google Scholar]
- Redmon, J. , & Farhadi, A. YOLOv3: An incremental improvement. 2018; arXiv:1804.02767. [Google Scholar]
- Woo, S. , Park, J. Proceedings of the European Conference on Computer Vision (ECCV) 2018, 3–19. [Google Scholar]
- NREL. (2022). Best Research-Cell Efficiency Chart. National Renewable Energy Laboratory, Golden, CO.
- IRENA. (2021). Innovation Outlook: Ocean Energy Technologies. International Renewable Energy Agency, Abu Dhabi.
- Drew, B. , Plummer, A. R., & Sahinkaya, M. N. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2009, 223, 887–902. [Google Scholar]
- Liu, X. , Sun, C. , Xiong, N., & Zhao, J. Biomimetic suction mechanisms in aquatic robots: A comprehensive review. Bioinspiration & Biomimetics 2020, 15, 041001. [Google Scholar]
- Holzinger, A. , Langs, G. , Denk, H., Zatloukal, K., & Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2019, 9, e1312. [Google Scholar]
- Jambeck, J. R. , Geyer, R. , Wilcox, C., et al. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar]
- Eriksen, M. , Lebreton, L. C. , Carson, H. S., et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar]
- Rochman, C. M. , Hoh, E. , Kurobe, T., & Teh, S. J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports 2013, 3, 3263. [Google Scholar]
- Geyer, R. , Jambeck, J. R., & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances 2017, 3, e1700782. [Google Scholar]
- van Sebille, E. , Wilcox, C. , Lebreton, L., et al. A global inventory of small floating plastic debris. Environmental Research Letters 2015, 10, 124006. [Google Scholar]
- Cózar, A. , Echevarría, F. , González-Gordillo, J. I., et al. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences 2014, 111, 10239–10244. [Google Scholar]
- Cole, M. , Lindeque, P. , Halsband, C., & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 2011, 62, 2588–2597. [Google Scholar]
- Andrady, A. L. Microplastics in the marine environment. Marine Pollution Bulletin 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Hammer, J. , Kraak, M. H., & Parsons, J. R. Plastics in the marine environment: The dark side of a modern gift. Reviews of Environmental Contamination and Toxicology 2012, 220, 1–44. [Google Scholar]
- Thiel, M. , Luna-Jorquera, G. , Álvarez-Varas, R., et al. Impacts of marine plastic pollution from continental coasts to subtropical gyres—Fish, seabirds, and other vertebrates in the SE Pacific. Frontiers in Marine Science 2018, 5, 238. [Google Scholar]
- Fulton, M. , Hong, J. Robotic detection of marine litter using deep visual detection models. 2019 International Conference on Robotics and Automation (ICRA) 2019, 5752–5758. [Google Scholar]
- Proenca, P. F. , & Simoes, P. arXiv arXiv:2003.06975, 2020.
- He, K. , Zhang, X. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, 770–778. [Google Scholar]
- Ronneberger, O. , Fischer, P., & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 2015, 234-241.
- Lin, T. Y. , Goyal, P. Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision 2017, 2980–2988. [Google Scholar]
- Vogel, S. (2020). Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.
- Alexander, R. M. Mechanics of the feeding action of a cyprinid fish. Journal of Zoology 1969, 159, 1–15. [Google Scholar] [CrossRef]
- Ferry-Graham, L. A. , Wainwright, P. C., & Lauder, G. V. Quantification of flow during suction feeding in bluegill sunfish. Zoology 2003, 106, 159–168. [Google Scholar]
- Holzman, R. , Day, S. W., Mehta, R. S., & Wainwright, P. C. Integrating the determinants of suction feeding performance in centrarchid fishes. Journal of Experimental Biology 2008, 211, 3296–3305. [Google Scholar]
- Carroll, A. M. , Wainwright, P. C., Huskey, S. H., Collar, D. C., & Turingan, R. G. Morphology predicts suction feeding performance in centrarchid fishes. Journal of Experimental Biology 2004, 207, 3873–3881. [Google Scholar]
- Denny, M. W. (1993). Air and Water: The Biology and Physics of Life's Media. Princeton University Press.
- Guzman, H. M. , Kaiser, S. , & Wahl, M. Biofouling on marine plastics: Natural or anthropogenic surfaces? Materials & Design 2021, 208, 109941. [Google Scholar]
- Saito, T. , Uchida, D. , & Sato, K. Energy-efficient autonomous underwater vehicles for ocean observation. Marine Technology Society Journal 2022, 56, 45–58. [Google Scholar]
- Dunn, J. , Sato, H. , & Chiba, S. Wave energy conversion systems: A state of the art review. Renewable Energy 2020, 152, 1203–1220. [Google Scholar]
- Liu, H. , Wang, Y. , & Li, M. Soft robotics: Academic insights and perspectives through bibliometric analysis. Bioinspiration & Biomimetics 2021, 16, 051001. [Google Scholar]
- ISO 14001:2015. Environmental Management Systems—Requirements with Guidance for Use. International Organization for Standardization, Geneva.
- London Convention. ( 1972). Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. International Maritime Organization, London.
- SUNRISE Project. ( 2014). Subsea Monitoring via Intelligent Swarms. European Commission Seventh Framework Programme, Brussels.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
