Submitted:
02 October 2025
Posted:
04 October 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Habitability in Aqueous Environments
2.1. Water Bulk Properties
2.2. Ionic Environment
2.3. CHNOPS
2.4. Energy
2.5. Physical Extremes to Life: Temperature
2.6. Polyextremes
3. Sensing in Aqueous Environments
3.1. Water bulk properties
3.2. Water Activity
3.3. Ionic Strength
3.4. Ionic Environment
3.4.1. Potentiometric Sensors
3.4.2. pH Sensing
3.4.3. CHNOPS Elements
3.4.4. Energy–Redox Couples
4. Deployment - Integration with Soft Robots 474
5. A Total Habitability Instrument – Summary, Conclusions, and Conjecture
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Hoehler, T. An energy balance concept for habitability. Astrobiology 2007, 7, 824–838. [Google Scholar] [CrossRef] [PubMed]
- Lammer, H.; Bredeh´’oft, J.; Coustenis, A.; Khodachenko, M.; Kaltenegger, L.; Grasset, O.; Prieur, D.; Raulin, F.; Ehrenfreund, P.; Yamauchi, M.; et al. What makes a planet habitable? Astronomy and Astrophysics Review 2009, 17, 181–249. [Google Scholar] [CrossRef]
- Cockell, C.; Bush, T.; Bryce, C.; Direito, S.; Fox-Powell, M.; Harrison, J.; Lammer, H.; Landen-mark, H.; Martin-Torres, J.; Nicholson, N.; et al. Habitability: A Review. Astrobiology 2016, 16, 89–117. [Google Scholar] [CrossRef]
- Wackett, L.; Dodge, A.; Ellis, L. Microbial Genomics and the Periodic Table. Applied and Environmental Microbiology 2004, 70, 647–655. [Google Scholar] [CrossRef]
- Seckbach, J. Life as We Know It; Springer: Dordrecht, 2006. [Google Scholar]
- Lebre, P.; De Maayer, P.; Cowan, D. Xerotolerant bacteria: surviving through a dry spell. Nature Reviews Microbiology 2017, 15, 285–296. [Google Scholar] [CrossRef]
- Epstein, W. The Roles and Regulation of Potassium in Bacteria. Progress in Nucleic Acid Research and Molecular Biology 2003, 75, 293–320. [Google Scholar]
- Hallsworth, J.; Yakimov, M.; Golyshin, P.; Gillion, J.; D’Auria, G.; de Lima Alves, F.; La Cono, V.; Genovese, M.; McKew, B.; Hayes, S.; et al. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environmental Microbiology 2007, 9, 801–813. [Google Scholar] [CrossRef]
- Payler, S.; Biddle, J.; Lollar, B.; Fox-Powell, M.; Edwards, T.; Ngwenya, B.; Paling, S.; Cockell, C. An ionic limit to life in the deep subsurface. Frontiers in Microbiology 2019, 10, 426. [Google Scholar] [CrossRef]
- Fox-Powell, M.; Hallsworth, J.; Cousins, C.; Cockell, C. Ionic Strength Is a Barrier to the Habitability of Mars. Astrobiology 2016, 16, 427–442. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends in Microbiology 2007, 15, 165–171. [Google Scholar] [CrossRef]
- Pikuta, E.V.; Hoover, R.; Tang, J. Microbial Extremophiles at the Limits of Life. Critical Reviews in Microbiology 2007, 33, 183–209. [Google Scholar] [CrossRef]
- Duckworth, A.; Grant, W.; Jones, B.; Van Steenbergen, R. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiology Ecology 1996, 19, 181–191. [Google Scholar] [CrossRef]
- Kim, B.; Gadd, G. Bacterial Physiology and Metabolism; Cambridge, 2008. 15. Gadd, G. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar]
- Shock, E.; Holland, M. Quantitative habitability. Astrobiology 2007, 7, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Hoehler, T.; Jorgensen, B. Microbial life under extreme energy limitation. Nature Reviews Microbiology 2013, 11, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Jelen, B.; Giovannelli, D.; Falkowski, P. The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. Annual Review of Microbiology 2016, 70, 45–62. [Google Scholar] [CrossRef]
- Buettner, G.; Wagner, B.; Rodgers, V. Quantitative Redox Biology: An Approach to Understand the Role of Reactive Species in Defining the Cellular Redox Environment. Cell Biochemistry and Biophysics 2013, 67, 477–483. [Google Scholar] [CrossRef]
- Chevrier, V.; Rivera-Valentin, E. Formation of recurring slope lineae by liquid brines on present day Mars. Geophysical Research Letters 2012, 39, L21202. [Google Scholar] [CrossRef]
- Takai, K.; Nakamura, K.; Toki, T.; Tsunogai, U.; Miyazaki, M.; Miyazaki, J.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Horikoshi, K. Cell proliferation at 122◦C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 10949–10954. [Google Scholar] [CrossRef]
- Mykytczuk, N.; Foote, S.; Omelon, C.; Southam, G.; Greer, C.; Whyte, L. Bacterial growth at -15◦C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME Journal 2013, 7, 1211–1226. [Google Scholar] [CrossRef]
- Childs, P.; Greenwood, J.; Long, C. Review of temperature measurement. Review of Scientific Instruments 2000, 71, 2959–2978. [Google Scholar] [CrossRef]
- Sim, J.; Hyun, J.; Doh, I.; Ahn, B.; Kim, Y. Thin-film resistance temperature detector array for the measurement of temperature distribution inside a phantom. Metrologia 2018, 55, L5. [Google Scholar] [CrossRef]
- Mahadeva, S.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulosepolypyrrole nanocomposite. Sensors and Actuators, A: Physical 2011, 165, 194–199. [Google Scholar] [CrossRef]
- Blasdel, N.; Wujcik, E.; Carletta, J.; Lee, K.; Monty, C. Fabric nanocomposite resistance temperature detector. IEEE Sensors Journal 2015, 15, 300–306. [Google Scholar] [CrossRef]
- Gilichinsky, D.; Rivkina, E.; Shcherbakova, V.; Laurinavichuis, K.; Tiedje, J. Supercooled water brines within permafrost - An unknown ecological niche for microorganisms: A model for astrobiology. Astrobiology 2003, 3, 331–341. [Google Scholar] [CrossRef]
- Belilla, J.; Moreira, D.; Jardillier, L.; Reboul, G.; Benzerara, K.; Lopez-Garcia, J.; Bertolino, P.; Lopez-Archilla, A.; Lopez-Garcia, P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nature Ecology and Evolution 2019, 3, 1552–1561. [Google Scholar] [CrossRef]
- Carrizo, D.; Sanchez-Garcia, L.; Rodriguez, N.; Gomez, F. Lipid Biomarker and Carbon Stable Isotope Survey on the Dallol Hydrothermal System in Ethiopia. Astrobiology 2019, 19, 1474–1489. [Google Scholar] [CrossRef]
- Chin, J.; Megaw, J.; Magill, C.; Nowotarski, K.; Williams, J.; Bhaganna, P.; Linton, M.; Patterson, M.; Underwood, G.; Mswaka, A.; et al. Solutes determine the temperature windows for microbial survival and growth. Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 7835–7840. [Google Scholar] [CrossRef]
- Ngugi, D.; Blom, J.; Stepanauskas, R.; Stingl, U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME Journal 2016, 10, 1383–1399. [Google Scholar] [CrossRef]
- Dick, G. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nature Reviews Microbiology 2019, 17, 271–283. [Google Scholar] [CrossRef]
- Perez, V.; Dorador, C.; Molina, V.; Yanez, C.; Hengst, M. Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 2018, 111, 1449–1465. [Google Scholar] [CrossRef]
- Harrison, J.P.; Dobinson, L.; Freeman, K.; McKenzie, R.; Wyllie, D.; Nixon, S.L.; Cockell, C.S. Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains. Journal of the Royal Society Interface 2015, 12, 20150658. [Google Scholar] [CrossRef] [PubMed]
- Reyes, D.; Iossifidis, D.; Auroux, P.; Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry 2002, 74, 2623–2636. [Google Scholar] [CrossRef] [PubMed]
- Guijt, R.; Manz, A. Miniaturised total chemical-analysis systems (μTAS) that periodically convert chemical into electronic information. Sensors and Actuators, B: Chemical 2018, 273, 1334–1345. [Google Scholar] [CrossRef]
- Skelley, A.; Scherer, J.; Aubrey, A.; Grover, W.; Ivester, R.; Ehrenfreund, P.; Grunthaner, F.; Bada, J.; Mathies, R. Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 1041–1046. [Google Scholar] [CrossRef]
- Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G. Technologies for autonomous integrated lab-on-chip systems for space missions. Acta Astronautica 2016, 128, 401–408. [Google Scholar] [CrossRef]
- Nascetti, A.; Mirasoli, M.; Marchegiani, E.; Zangheri, M.; Costantini, F.; Porchetta, A.; Iannascoli, L.; Lovecchio, N.; Caputo, D.; de Cesare, G.; et al. Integrated chemiluminescence-based lab-on- chip for detection of life markers in extraterrestrial environments. Biosensors and Bioelectronics 2019, 123, 195–203. [Google Scholar] [CrossRef]
- Mathies, R.; Razu, M.; Kim, J.; Stockton, A.; Turin, P.; Butterworth, A. Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer. Astrobiology 2017, 17, 902–912. [Google Scholar] [CrossRef]
- Romero-Wolf, A.; Vance, S.; Maiwald, F.; Heggy, E.; Ries, P.; Liewer, K. A passive probe for subsurface oceans and liquid water in Jupiter’s icy moons. Icarus 2015, 248, 463–477. [Google Scholar] [CrossRef]
- Bruzzone, L.; Plaut, J.; Alberti, G.; Blankenship, D.; Bovolo, F.; Campbell, B.; Castelletti, D.; Gim, Y.; Ilisei, A.; Kofman, W.; et al. Jupiter ICY moon explorer (JUICE): Advances in the design of the radar for Icy Moons (RIME). In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy; 2015. [Google Scholar] [CrossRef]
- Moroz, V.I. Infrared spectrophotometry of the Moon and the Galilean satellites of Jupiter. Soviet Astronomy 1966, 9, 999. [Google Scholar]
- Smith, B.; Soderblom, L.; Johnson, T.V.; Ingersoll, A.; Collins, S.; Shoemaker, E.; Hunt, G.; Masursky, H.; Carr, M.; Davies, M.; et al. The Jupiter system through the eyes of Voyager 1. Science 1979, 204, 951–972. [Google Scholar] [CrossRef]
- Anderson, J.; Lau, E.; Sjogren, W.; Schubert, G.; Moore, W. Europa’s differentiated internal structure: Inferences from two Galileo encounters. Science 1997, 276, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.; Belton, M.; Chapman, C.; Davies, M.; Geissler, P.; Greenberg, R.; McEwen, A.; Tufts, B.; Greeley, R.; Sullivan, R.; et al. Evidence for a subsurface ocean on Europa. Nature 1998, 391, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Waite, J.; Lewis, W.; Kasprzak, W.; Anicich, V.; Block, B.; Cravens, T.; Fletcher, G.; Ip, W.H.; Luhmann, J.; McNutt, R.; et al. The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Science Reviews 2004, 114, 113–231. [Google Scholar] [CrossRef]
- Porco, C.; Helfenstein, P.; Thomas, P.; Ingersoll, A.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R.; Roatsch, T.; et al. Cassini observes the active south pole of enceladus. Science 2006, 311, 1393–1401. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Hamidon, M. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef]
- Blank, T.; Eksperiandova, L.; Belikov, K. Recent trends of ceramic humidity sensors development: A review. Sensors and Actuators, B: Chemical 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Najeeb, M.; Ahmad, Z.; Shakoor, R. Organic Thin-Film Capacitive and Resistive Humidity Sensors: A Focus Review. Advanced Materials Interfaces 2018, 5, 1800969. [Google Scholar] [CrossRef]
- Bai, M.; Seitz, W. A fiber optic sensor for water in organic solvents based on polymer swelling. Talanta 1994, 41, 993–999. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D. Polymer optical fiber grating as water activity sensor. Micro-structured and Specialty Optical Fibres III 2014, 9128, 91280F. [Google Scholar]
- Blyth, J.; Millington, R.; Mayes, A.; Frears, E.; Lowe, C. Holographic Sensor forWater in Solvents. Analytical Chemistry 1996, 68, 1089–1094. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Lou, W.; Shentu, F.; Zhong, C.; Dong, X.; Tong, L. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide. Applied Physics Letters 2016, 109, 031107. [Google Scholar] [CrossRef]
- Lo Presti, D.; Massaroni, C.; Schena, E. Optical Fiber Gratings for Humidity Measurements: A Review. IEEE Sensors Journal 2018, 18, 9065–9074. [Google Scholar] [CrossRef]
- Black, W.; Santiago, M.; Zhu, S.; Stroock, A. Ex Situ and In Situ Measurement of Water Activity with a MEMS Tensiometer. Analytical Chemistry 2019, 92, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Pagay, V.; Santiago, M.; Sessoms, D.; Huber, E.; Vincent, O.; Pharkya, A.; Corso, T.; Lakso, A.; Stroock, A. A microtensiometer capable of measuring water potentials below -10 MPa. Lab on a Chip 2014, 14, 2806–2817. [Google Scholar] [CrossRef]
- Jaffrezic-Renault, N.; Dzyadevych, S.V. Conductometric microbiosensors for environmental monitoring. Sensors 2008, 8, 2569–2588. [Google Scholar] [CrossRef]
- Sheppard, N.; Tucker, R.; Wu, C. Electrical Conductivity Measurements Using Microfabricated Interdigitated Electrodes. Anal. Chem 1993, 65, 1199–1202. [Google Scholar] [CrossRef]
- Mortensen, D.; Birkelund, K.; Hansen, O.; Thomsen, E.V.; Hyldg, A. Autonomous multi-sensor micro-system for measurement of ocean water salinity. Sensors and Actuators A: Physical 2008, 147, 474–484. [Google Scholar]
- Jonsson, J.; Smedfors, K.; Nyholm, L.; Thornell, G. Towards Chip-Based Salinity Measurements for Small Submersibles and Biologgers. International Journal of Oceanography 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Zhou, B.; Bian, C.; Tong, J.; Xia, S. Fabrication of a miniature multi-parameter sensor chip for water quality assessment. Sensors 2017, 17, 1–14. [Google Scholar] [CrossRef]
- Huang, X.; Mowlem, M.; Pascal, R.; Chamberlain, K.; Banks, C.; Morgan, H. A miniature high precision conductivity and temperature sensor system for ocean monitoring. IEEE Sensors Journal 2010, 11, 3246–3252. [Google Scholar] [CrossRef]
- Kounaves, S.; Hecht, M.; West, S.; Morookian, J.; Young, S.; Quinn, R.; Grunthaner, P.; Wen, X.; Weilert, M.; Cable, C.; et al. The MECA wet chemistry laboratory on the 2007 Phoenix Mars Scout Lander. Journal of Geophysical Research E: Planets 2009, 114, 1–20. [Google Scholar] [CrossRef]
- Oiler, J.; Shock, E.; Hartnett, H.; Dombard, A.; Yu, H. Harsh environment sensor array-enabled hot spring mapping. IEEE Sensors Journal 2014, 14, 3418–3425. [Google Scholar] [CrossRef]
- Fraustp da Silva, J.; Williams, R. The biological chemistry of the elements: the inorganic chemistry of life; Clarendon: Oxford, UK, 1997. [Google Scholar]
- B´’uhlmann, P.; Chen, L.D. Ion-selective electrodes with ionophore-doped sensing membranes. In Supramolecular Chemistry: From Molecules to Nanomaterials; 2012. [Google Scholar]
- Jackson, D.; Nelson, P. Preparation and properties of some ion selective membranes: A review. Journal of Molecular Structure 2019, 1182, 241–259. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Ceresa, A. Selectivity of Potentiometric Ion Sensors. E. Anal. Chem 1994, 66, 3021–3030. [Google Scholar] [CrossRef]
- Cattrall, R.; Hamilton, I. Coated-Wire Ion-Selective Electrodes. Analytical Chemistry 1984, 43, 1905–1906. [Google Scholar] [CrossRef]
- Bobacka, J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Analytical Chemistry 1999, 71, 4932–4937. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors Based on Conducting Polymers. Electroanalysis 2003, 15, 366–374. [Google Scholar] [CrossRef]
- Hupa, E.; Vanamo, U.; Bobacka, J. Novel Ion-to-Electron Transduction Principle for Solid Contact ISEs. Electroanalysis 2015, 27, 591–594. [Google Scholar] [CrossRef]
- Jaworska, E.; Kisiel, A.; Maksymiuk, K.; Michalska, A. Lowering the Resistivity of Polyacrylate Ion-Selective Membranes by Platinum Nanoparticles Addition. Analytical Chemistry 2011, 83, 438–445. [Google Scholar] [CrossRef]
- Li, J.; Yin, T.; Qin, W. An effective solid contact for an all-solid-state polymeric membrane Cd2+ selective electrode: Three-dimensional porous graphene-mesoporous platinum nanoparticle composite. Sensors and Actuators, B: Chemical 2017, 239, 438–446. [Google Scholar] [CrossRef]
- Boeva, Z.; Lindfors, T. Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodes. Sensors and Actuators, B: Chemical 2015, 224, 624–631. [Google Scholar] [CrossRef]
- Crespo, G.; Macho, S.; Rius, F. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Analytical Chemistry 2008, 80, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zou, X.; Stein, A.; B´’uhlmann, P. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Analytical Chemistry 2014, 86, 7111–7118. [Google Scholar] [CrossRef]
- Weber, A.; O’Neil, G.; Kounaves, S. Solid Contact Ion-Selective Electrodes for in Situ Measurements at High Pressure. Analytical Chemistry 2017, 89, 4803–4807. [Google Scholar] [CrossRef]
- Peshkova, M.; Sokalski, T.; Mikhelson, K.; Lewenstam, A. Obtaining Nernstian Response of a Ca2+ -Selective Electrode in a Broad Concentration Range by Tuned Galvanostatic Polarization. Analytical Chemistry 2008, 80, 9181–9187. [Google Scholar] [CrossRef]
- Van de Velde, L.d.E.; Olthuis, W. Solid contact potassium selective electrodes for biomedical applications – a review. Talanta 2016, 160, 56–65. [Google Scholar] [CrossRef]
- Crespo, G. Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochimica Acta 2017, 245, 1023–1034. [Google Scholar] [CrossRef]
- Jaramillo, E.; Noell, A. Development of Miniature Solid Contact Ion Selective Electrodes for in situ Instrumentation. Electroanalysis 2020. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chemical Reviews 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Bieg, C.; Fuchsberger, K.; Stelzle, M. Introduction to polymer-based solid-contact ion-selective electrodes—basic concepts, practical considerations, and current research topics. Analytical and Bioanalytical Chemistry 2017, 409, 45–61. [Google Scholar] [CrossRef]
- Bergveld, P. Short Communications: Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Transactions on Biomedical Engineering 1970, BME 17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Bausells, J.; Carrabina, J.; Errachid, A.; Merlos, A. Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors and Actuators, B: Chemical 1999, 57, 56–62. [Google Scholar] [CrossRef]
- Ouremchi, M.; Boutahiri, A.E.; Farah, F.; Khadiri, K.E.; Qjidaa, H.; Lakhassassi, A.; Tahiri, A. Integrated ph-sensor for medical application in 180nm CMOS technology. In Proceedings of the 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia; 2019. [Google Scholar] [CrossRef]
- Moser, N.; Leong, C.; Hu, Y.; Boutelle, M.; Georgiou, P. An ion imaging ISFET array for Potassium and Sodium detection. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC; 2016. [Google Scholar]
- Hu, Y.; Moser, N.; Georgiou, P. A 32 x 32 ISFET Chemical Sensing Array with Integrated Trapped Charge and Gain Compensation. IEEE Sensors Journal 2017, 17, 5276–5284. [Google Scholar] [CrossRef]
- Zhang, J.R.; Ionescu, A. All CMOS Integrated 3D-Extended Metal Gate ISFETs for pH and Multi-Ion (Na + , K + , Ca 2 +) sensing. IEEE International Electron Devices Meeting (IEDM), San Francisco, CA; 2019. [Google Scholar]
- Niigata, K.; Narano, K.; Maeda, Y.; Ao, J. Temperature dependence of sensing characteristics of a pH sensor fabricated on AlGaN/GaN heterostructure. Japanese Journal of Applied Physics 2014, 53, 11RD01. [Google Scholar] [CrossRef]
- Sohbati, M.; Toumazou, C. Dimension and shape effects on the ISFET performance. IEEE Sensors Journal 2015, 15, 1670–1679. [Google Scholar] [CrossRef]
- Sardarinejad, A.; Maurya, D.; Khaled, M.; Alameh, K. Temperature effects on the performance of RuO2 thin-film pH sensor. Sensors and Actuators, A: Physical 2015, 233, 414–421. [Google Scholar] [CrossRef]
- Gaddour, A.; Dghais, W.; Hamdi, B.; Ben Ali, M. Temperature Compensation Circuit for ISFET Sensor. Journal of Low Power Electronics and Applications 2020, 10, 2. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sinha, S.; Sahu, N.; Majumder, S.; Narang, P.; Mukhiya, R. Modeling and simulation of temperature drift for ISFET-based pH sensor and its compensation through machine learning techniques. International Journal of Circuit Theory and Applications 2019, 47, 954–970. [Google Scholar] [CrossRef]
- Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators, B: Chemical 2003, 88, 1–20. [Google Scholar] [CrossRef]
- Moser, N.; Lande, T.; Toumazou, C.; Georgiou, P. ISFETs in CMOS and Emergent Trends in Instrumentation: A Review. IEEE Sensors Journal 2016, 16, 6496–6514. [Google Scholar] [CrossRef]
- Haber, F.; Hlemensiewicz, Z. Uber elektrische phasengrenzkr´’afte. Zeitschrift f´’ur physikalische Chemie 1909, 67, 385–431. [Google Scholar] [CrossRef]
- Pucacco, L.; Carter, N. A glass-membrane pH microelectrode. Analytical Biochemistry 1976, 73, 501–512. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.; Dickson, A.; Weisberg, S.; Coale, K.; Elrod, V.; Hunter, C.; Johnson, K.; Kram, S.; Kudela, R.; Martz, T.; et al. An evaluation of ISFET sensors for coastal pH monitoring applications. Regional Studies in Marine Science 2017, 12, 11–18. [Google Scholar] [CrossRef]
- Zorrilla, L.; Calvo, J. Monitoring system for ISFET and glass electrode behavior comparison. IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru.
- Johnson, K.; Jannasch, H.; Coletti, L.; Elrod, V.; Martz, T.; Takeshita, Y.; Carlson, R.; Connery, J. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks. Analytical Chemistry 2016, 88, 3249–3256. [Google Scholar] [CrossRef]
- McLaughlin, K.; Nezlin, N.; Weisberg, S.; Dickson, A.; Booth, J.; Cash, C.; Feit, A.; Gully, J.; Johnson, S.; Latker, A.; et al. An evaluation of potentiometric pH sensors in coastal monitoring applications. Limnology and Oceanography: Methods 2017, 15, 679–689. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Lin, C.H. Mass-produced polyethylene-terephthalate film coated with tantalum pentoxide for pH measurement under ISFET detection configuration. Microsystem Technologies 2017, 23, 293–298. [Google Scholar] [CrossRef]
- Voigt, H.; Schitthelm, F.; Lange, T.; Kullick, T.; Ferretti, R. Diamond-like carbon-gate pH-ISFET. Sensors and Actuators, B: Chemical 1997, 44, 441–445. [Google Scholar] [CrossRef]
- Qin, Y.; Kwon, H.; Howlader, M.; Deen, M. Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges. RSC Advances 2015, 5, 69086–69109. [Google Scholar] [CrossRef]
- Marzouk, S.; Ufer, S.; Buck, R.; Johnson, T.; Dunlap, L.; Cascio, W. Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Analytical Chemistry 1998, 70, 5054–5061. [Google Scholar] [CrossRef]
- Ges, I.; Ivanov, B.; Schaffer, D.; Lima, E.; Werdich, A.; Baudenbacher, F. Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosensors and Bioelectronics 2005, 21, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chiao, J. Integrated pH and Sodium Sensor Array Based on Iridium Oxide Film. IEEE SENSORS, New Delhi 2018.
- Hoffman, J.H.; Hodges Jr, R.R.; Evans, D.E. Lunar orbital mass spectrometer experiment. In Proceedings of the Lunar and Planetary Science Conference Proceedings; 1972; Vol. 3, p. 2205. [Google Scholar]
- Rushneck, D.; Diaz, A.V.; Howarth, D.; Rampacek, J.; Olson, K.; Dencker, W.; Smith, P.; McDavid, L.; Tomassian, A.; Harris, M.; et al. Viking gas chromatograph-mass spectrometer. Review of Scientific Instruments 1978, 49, 817–834. [Google Scholar] [CrossRef] [PubMed]
- Mahaffy, P.; Webster, C.; Cabane, M.; Conrad, P.; Coll, P.; Atreya, S.; Arvey, R.; Barciniak, M.; Benna, M.; Bleacher, L.; et al. The sample analysis at mars investigation and instrument suite. Space Science Reviews 2012, 170, 401–478. [Google Scholar] [CrossRef]
- Kasprzak, W.; Niemann, H.; Harpold, D.; Richards, J.; Manning, H.; Patrick, E.; Mahaffy, P. Cassini orbiter ion and neutral mass spectrometer instrument. Proceedings of SPIE - The International Society for Optical Engineering 1996, 2803, 129–140. [Google Scholar]
- Niemann, H.; Atreya, S.; Demick, J.; Gautier, D.; Haberman, J.; Harpold, D.; Kasprzak, W.; Lunine, J.; Owen, T.; Raulin, F. Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. Journal of Geophysical Research 2010, 115, E12006. [Google Scholar] [CrossRef]
- Vago, J.; Westall, F.; Teams, P.I.; S, L.; Coates, A.; Jaumann, R.; Korablev, O.; Ciarletti, V.; Mitrofanov, I.; Josset, J.L.; et al. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology 2017, 17, 471–510. [Google Scholar] [CrossRef]
- Grasset, O.; Dougherty, M.; Coustenis, A.; Bunce, E.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science 2013, 78, 1–21. [Google Scholar] [CrossRef]
- Howell, S.; Pappalardo, R. NASA’s Europa Clipper—a mission to a potentially habitable ocean world. Nature Communications 2020, 11, 9–12. [Google Scholar] [CrossRef]
- Denisov, E.; Damoc, E.; Lange, O.; Makarov, A. Orbitrap mass spectrometry with resolving powers above 1,000,000. International Journal of Mass Spectrometry 2012, 325–327, 80–85. [Google Scholar] [CrossRef]
- Arevalo, R.; Selliez, L.; Briois, C.; Carrasco, N.; Thirkell, L.; Cherville, B.; Colin, F.; Gaubicher, B.; Farcy, B.; Li, X.; et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Rapid Communications in Mass Spectrometry 2018, 32, 1875–1886. [Google Scholar] [CrossRef]
- Arevalo, R.; Ni, Z.; Danell, R. Mass spectrometry and planetary exploration: A brief review and future projection. Journal of Mass Spectrometry 2020. [Google Scholar] [CrossRef]
- de Hoffmann, E. Mass Spectrometry. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Maurice, S.; Wiens, R.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Science Reviews 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Donaldson, K.; Yan, X. A first simulation of soil-laser interaction investigation for soil characteristic analysis. Geoderma 2019, 337, 701–709. [Google Scholar] [CrossRef]
- Yan, X.T.; Donaldson, K.; Davidson, C.M.; Gao, Y.; Wu, H.; Houston, A.M.; Kisdi, A. Effects of sample pretreatment and particle size on the determination of nitrogen in soil by portable LIBS and potential use on robotic-borne remote Martian and agricultural soil analysis systems. RSC Adv. 2018, 8. [Google Scholar] [CrossRef]
- Ellery, A.; Wynn-williams, D. Why Raman Spectroscopy on Mars?—A Case of the Right Tool for the Right Job. Astrobiology 2003, 3, 565–580. [Google Scholar] [CrossRef]
- Angel, S.; Gomer, N.; Sharma, S.; McKay, C.; Ames, N. Remote Raman spectroscopy for planetary exploration: A review. Applied Spectroscopy 2012, 66, 137–150. [Google Scholar] [CrossRef]
- Zhang, X.; Brewer, P. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophysical Research Letters 2019, 38. [Google Scholar] [CrossRef]
- Misra, A.; Acosta-Maeda, T.; Sandford, M.; Gasda, P.; Porter, J.; Sharma, S.; Lucey, P.; Garmire, D.; Zhou, J.; Oyama, T.; et al. Standoff Biofinder: powerful search for life instrument for planetary exploration 2018. [CrossRef]
- Edwards, H.; Hutchinson, I.; Ingley, R. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Analytical and Bioanalytical Chemistry 2012, 404, 1723–1731. [Google Scholar] [CrossRef]
- Goesmann, F.; Brinckerhoff, W.; Raulin, F.; Goetz, W.; Danell, R.; Getty, S.; Siljestr´’om, S.; Misbach, H.; Steininger, H.; Arevalo, R.; et al. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments. Astrobiology 2017, 17, 655–685. [Google Scholar] [CrossRef]
- Beegle, L.; Bhartia, R.; White, M.; Deflores, L.; Abbey, W.; Wu, Y.; Cameron, B.; Moore, J.; Fries, M.; Burton, A.; et al. SHERLOC: Scanning habitable environments with Raman luminescence for organics chemicals. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA; 2015. [Google Scholar] [CrossRef]
- Perez, R.; Newell, R.; Robinson, S.; Ca´’is, P.; Maurice, S.; Wiens, R.; Pares, L.; Bernardi, P.; Reess, J.M.; McCabe, K. The supercam instrument on the NASA Mars 2020 mission: optical design and performance. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France; 2017. [Google Scholar] [CrossRef]
- Jones, R.R.; Zhang, L. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett 2019, 14, 231. [Google Scholar] [CrossRef]
- Pan, J.; Fang, P.; Fang, X.; Hu, T.; Fang, J.; Fang, Q. A low-cost palmtop high-speed capillary electrophoresis bioanalyzer with laser induced fluorescence detection. Scientific Reports 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Nightingale, A.; Beaton, A.; Mowlem, M. Trends in microfluidic systems for in situ chemical analysis of natural waters. Sensors and Actuators, B: Chemical 2015, 221, 1398–1405. 138. Daniel, A.; La´’es, A.; Barus, C.; Beaton, A.; Blandfort, D.; Guigues, N.; Knockaert, M.; Munaron, D.; Salter, I.; Woodward, E.; et al. Toward a Harmonization for Using in situ Nutrient Sensors in the Marine Environment. Frontiers in Marine Science 2020, 6, 773.
- Bresnahan, P.; Martz, T. Gas Diffusion Cell Geometry for a Microfluidic Dissolved Inorganic Carbon Analyzer. IEEE Sensors Journal 2018, 18, 2211–2217. [Google Scholar] [CrossRef]
- Tweedie, M.; Sun, D.; Gajula, D.; Ward, B.; Maguire, P. The analysis of dissolved inorganic carbon in liquid using a microfluidic conductivity sensor with membrane separation of CO2. Microfluidics and Nanofluidics 2020, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Beaton, A.; Cardwell, C.; Thomas, R.; Sieben, V.; Legiret, F.E.; Waugh, E.; Statham, P.; Mowlem, M.; Morgan, H. Lab-on-Chip Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters. Environ. Sci. Technol 2012, 46, 58. [Google Scholar] [CrossRef] [PubMed]
- Petroni, J.; Lucca, B.; Ferreira, V. Simple approach for the fabrication of screen-printed carbon based electrode for amperometric detection on microchip electrophoresis. Analytica Chimica Acta 2017, 954, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, G.; Mao, S.; Chen, J. Rapid detection of nutrients with electronic sensors: A review. Environmental Science: Nano 2018, 5, 837–862. [Google Scholar] [CrossRef]
- Gibbon-Walsh, K.; Sala´’un, P.; van den Berg, C. Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode. Environmental Chemistry 2011, 8, 475. [Google Scholar] [CrossRef]
- Clark, L.; Wolf, R.; Granger, D.; Taylor, Z. Continuous recording of blood oxygen tensions by polarography. Journal of applied physiology 1953, 6, 189–193. [Google Scholar] [CrossRef]
- Revsbech, N. An oxygen microsensor with a guard cathode. Limnology and Oceanography 1989, 34, 474–478. [Google Scholar] [CrossRef]
- Wenzh´’ofer, F.; Holby, O.; Glud, R.; Nielsen, H.; Gundersen, J. In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece. Marine Chemistry 2000, 69, 43–54. [Google Scholar] [CrossRef]
- Suzuki, H.; Sugama, A.; Kojima, N. Miniature Clark-type oxygen electrode with a three-electrode configuration. Sensors and Actuators: B. Chemical 1990, 2, 297–303. [Google Scholar] [CrossRef]
- Suzuki, H. Microfabrication of chemical sensors and biosensors for environmental monitoring. Materials Science and Engineering C 2000, 12, 55–61. [Google Scholar] [CrossRef]
- Wu, C.C.; Matsue, T. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sensors and Actuators, B: Chemical 2005, 110, 342–329. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.; Choi, J.; Kang, S.; Pak, Y.; Pak, J. Development of multi-well-based electrochemical dissolved oxygen sensor array. Sensors and Actuators, B: Chemical 2020, 306, 127465. [Google Scholar] [CrossRef]
- Gepner, M.; Mack, J.; Stokes, A.A. A standardized platform for translational advances in fluidic soft systems. Device 2025. [Google Scholar] [CrossRef]
- Takeshi, K.; Daichi, K. Decentralized Control Mechanism for Determination of Moving Direction in Brittle StarsWith Penta-Radially Symmetric Body. Frontiers in Neurorobotics 2019, 13. [Google Scholar]
- Kaipa, K.; Onal, C.; Jovanovic, V.; Djuric, A.; Luo, M.; Bowers, M.; Popovic, M. Bioinspired 1000 Robotics. Biomechatronics 2019, 1001. [Google Scholar]
- Kulkarni, M.; Edward, S.; Golecki, T.; Kaehr, B.; Golecki, H. Soft robots built for extreme 1002 environments. Soft Sci. 2025, 5, 12. [Google Scholar] [CrossRef]
- Zhang, Y. Progress, challenges, and prospects of soft robotics for space applications. Advanced Intelligent Systems 2023, 5. [Google Scholar] [CrossRef]
- Mahon, S.T.; Buchoux, A.; Sayed, M.E.; Teng, L.; Stokes, A.A. Soft Robots for Extreme Environments: Removing Electronic Control. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea (South); 2019; pp. 782–787. [Google Scholar]
- Speck, T.; Poppinga, S.; Speck, O.; Tauber, F. Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene. The Anthropocene Review 2021, 9. [Google Scholar] [CrossRef]
- Vihar, B.; Hanisch, F.; Baumgartner, W. Neutral glycans from sandfish skin can reduce friction of polymers. J. R. Soc. Interface 2016, 13, 20160103. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, N.; Karsai, A.; Murray-Cooper, M.; Ozkan-Aydin, Y.; Aydin, E.; Goldman, D.; Hawkes, E. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci Robot. 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Guillard, F.; Forterre, Y.; Pouliquen, O. Lift forces in granular media. Physics of Fluids 2014, 26. [Google Scholar] [CrossRef]
- Maladen, R.D.; Ding, Y.; Umbanhowar, P.B.; Kamor, A.; Goldman, D.I. Mechanical models of sandfish locomotion reveal principles of high-performance subsurface sandswimming. J. R. Soc. Interface 2011, 8, 1332–1345. [Google Scholar] [CrossRef]
- Chopra, S.; Vasile, D.; Gravish, N. Toward Robotic Sensing and Swimming in Granular Environments using Underactuated Appendages. Adv. Intell. Syst. 2023, 5, 2200404. [Google Scholar] [CrossRef]
- Sandoval, J.A.; Jadhav, S.; Tolley, M.T. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc. Bioinspir. Biomim. 2019, 14, 066016. [Google Scholar] [CrossRef]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013, 31, 287–294. [Google Scholar] [CrossRef]
- Foster-Hall, W.; Harvey, D.; Akmeliawati, R. Soft Robotics for Space Applications: Towards a Family of Locomotion Platforms. In Proceedings of the 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), San Diego, CA, USA; 2024; pp. 698–704. [Google Scholar]
- Taylor, D.; Dirks, J.H. Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis. J. R. Soc. Interface 2012, 9, 3480–3489. [Google Scholar] [CrossRef]
- FRAGA, M.C.; VEGA, C.S. How does rapid burial work? New insights from experiments with echinoderms. Adv. Intell. Syst. 2024, 67. [Google Scholar]
- Heydari, S.; Johnson, S.; Kanso, E. Sea star inspired crawling and bouncing. J. R. Soc.Interface 2020, 17. [Google Scholar] [CrossRef]
- Monica Isava, A.G.W.V. Razor clam-inspired burrowing in dry soil. International Journal of Non-Linear Mechanics 2016, 81, 30–39. [Google Scholar] [CrossRef]
- Mack, J.; Gepner, M.; Giorgio-Serchi, F.; Stokes, A.A. An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration. Biomimetics 2025, 10, 455. [Google Scholar] [CrossRef]
- Hu, D. Stretchable e-skin and transformer enable high-resolution morphological reconstruction for soft robots. Nat Mach Intell 2023, 5, 261–272. [Google Scholar] [CrossRef]
- Hegde, C.; Su, J. Sensing in Soft Robotics. ACS Nano 2023, 17, 16. [Google Scholar] [CrossRef]
- Qu, J.; Cui, G. Advanced Flexible Sensing Technologies for Soft Robots. Advanced functional materials 2024, 34, 29. [Google Scholar] [CrossRef]
- Zhou, X. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. Nanomaterials 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, D. Advances and perspectives in fiber-based electronic devices for next-generation soft systems. npj Flex Electron 2025, 9, 84. [Google Scholar] [CrossRef]
- Chapa, S.; Wang, H. Soft touchless sensors and touchless sensing for soft robots. Frontiers in Robotics and AI 2024, 11. [Google Scholar]
- Nemitz, M. Pellet Printing for Soft Devices.
- Dou, J.; Yang, Y.; Baljit, S.; Bin, M.; Zhijiang, L.; Jianming, X.; Yan, H. Discussion: Embracing microfluidics to advance environmental science and technology. Science of The Total Environment 2024, 937. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Kecili, R.; Hussain, C. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends in Environmental Analytical Chemistry 2022, 34. [Google Scholar] [CrossRef]
- Mesquita, P.; Liyuan, G.; Yang, L. Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies 2022, 1. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, J.; Zhang, P.; Zhang, Y.; Miao, Y.; Gao, S.; Deng, Y.; Geng, L. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosensors and Bioelectronics 2018, 121, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, A.; Hurford, T.; Barge, L.; Bland, M.; Bowman, J.; Brinckerhoff, W.; Buratti, B.; Cable, M.; Castillo-Rogez, J.; Collins, G.; et al. The NASA Roadmap to Ocean Worlds. Astrobiology 2019, 19, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Aguzzi, J.; Flexas, M.; Fl´’ogel, S.; Lo Iacono, C.; Tangherlini, M.; Costa, C.; Marini, S.; Bahamon, N.; Martini, S.; Fanelli, E.; et al. Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies. Astrobiology 2020, 20, 897–915. [Google Scholar] [CrossRef]
- Bartoszewicz, B.; Da˛browska, S.; Lewenstam, A.; Migdalski, J. Calibration free solid contact electrodes with two PVC based membranes. Sensors and Actuators, B: Chemical 2018, 274, 268–273. [Google Scholar] [CrossRef]
- Mosayebzadeh, Z.; Ansari, R.; Arvand, M. Preparation of a solid-state ion-selective electrode based on polypyrrole conducting polymer for magnesium ion. Journal of the Iranian Chemical Society 2014, 11, 447–456. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Lamb, D.; Lesniewski, P.; Chen, Z.; Megharaj, M.; Naidu, R. Novel recalibration methodologies for ion-selective electrode arrays in the multi-ion interference scenario. Journal of Chemometrics 2017, 31, e2870. [Google Scholar] [CrossRef]
- Park, J.; Salmi, M.; Wan Salim, W.; Rademacher, A.; Wickizer, B.; Schooley, A.; Benton, J.; Cantero, A.; Argote, P.; Ren, M.; et al. An autonomous lab on a chip for space flight calibration of gravity-induced transcellular calcium polarization in single-cell fern spores. Lab on a Chip 2017, 17, 1095–1103. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.M.; Li, S. Minreview: Recent advances in the development of gaseous and dissolved oxygen sensors. Instrumentation Science Technology 2019, 47, 19–50. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Compton, R. Direct Voltammetric Determination of Total Iron with a Gold Microelectrode Ensemble. Electroanalysis 2012, 24, 2061–2069. [Google Scholar] [CrossRef]
- Stozhko, N.; Inzhevatova, O.V.; Kolyadina, L. Determination of Iron in Natural and Drinking Waters by Stripping Voltammetry. Zhurnal Analiticheskoi Khimii 2005, 60, 747–752. [Google Scholar] [CrossRef]
- Badea, M.; Amine, A.; Palleschi, G.; Moscone, D.; Volpe, G.; Curulli, A. New electrochemical sensors for detection of nitrites and nitrates. Journal of Electroanalytical Chemistry 2001, 509, 66–72. [Google Scholar] [CrossRef]
- Gartia, M.; Braunschweig, B.; Chang, T.; Moinzadeh, P.; Minsker, B.; Agha, G.; Wieckowski, A.; Keefer, L.; Liu, G. The microelectronic wireless nitrate sensor network for environmental water monitoring. Journal of Environmental Monitoring 2012, 14, 3068–3075. [Google Scholar] [CrossRef]
- Luther, G.; Brendel, P.; Lewis, B.; Sundby, B.; Lefrancois, L.; Silverberg, N.; Nuzzio, D. Simultaneous measurement of O2, Mn, Fe, I-, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode. Limnology and Oceanography 1998, 43, 325–333. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A. Microfabricated chip integrating a bismuth microelectrode array for the determination of trace cobalt(II) by adsorptive cathodic stripping voltammetry. Sensors and Actuators, B: Chemical 2016, 229, 362–369. [Google Scholar] [CrossRef]
- Jena, B.; Raj, C. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Analytical Chemistry 2008, 80, 4836–4844. [Google Scholar] [CrossRef]
- Punrat, E.; Chuanuwatanakul, S.; Kaneta, T.; Motomizu, S.; Chailapakul, O. Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode. Talanta 2013, 116, 1018–1025. [Google Scholar] [CrossRef]

| Ion | Examples of biological functions | Examples of sensor |
|---|---|---|
| Na+ | Osmotic balance, maintaining electrolytic balances, stability of molecules and structures | ISE with silver nanoparticles as solid contact [185] ISFET array [92] |
| K+ | Osmotic balance, maintaining electrolytic balances, stability of molecules and structures | ISE with silver nanoparticles as solid contact [185] ISE with microporous carbon as solid contact [80] ISFET array [92] |
| Mg2+ | Stability of molecules and structures, Essential cation pair for anions, e.g. phosphates |
Solid contact pencil graphite electrodes with polypyrrole conducting polymer as solid contact [186] Carbon paste solid contact electrodes [187] |
| Ca2+ | Outer cell membranes and coats, in prokaryotes, wider array of differing functions in advanced eukaryotes and multicellular organisms. | ISE array for cubesat experiment [188] ISFET array [92] |
| Cl- | Osmotic balance, maintaining electrolytic balances, stability of molecules and structures | Amperommetric electrochemical sensors [108], and citations therein ISE with silver nanoparticles as solid contact [185] |
| Sensing technology | Sensing target | Technology development | Minimum size | Integration capability |
|---|---|---|---|---|
| Glass electrodes | pH, some cations | Established | Order of ~10 cm, plus readout instrument | Low |
| Liquid junction polymer membrane ISE | Major cations, eg K+, Mg2+, Ca2+ | Established | Order of ~10 cm, plus readout instrument | Low |
| Solid contact ISE | Major ions, eg K+, Mg2+, Ca2+ | Some commercial availability, highly active research | Order of 10-100 microns, miniaturised readout instrumentation | High |
| ISFET | Major cations, eg K+, Mg2+, Ca2+ pH | Commercial availability, highly active research | Order of <10 microns, Miniaturised readout instrumentation |
High |
| Chemical | Biological redox process | Examples of electrochemical sensor (reference) |
|---|---|---|
| H2 | Methanogenesis, H2 oxidation | Gold and ceramic based electrodes for measurement at high temperature and pressure [189] |
| CO2 | Methanogenisis | Potentiometric measurements with ion selective electrodes |
| O2 | Several chemolithotrophic and chemoorganotrophic processes | Clark type sensors [190], and citations therein. |
| Fe(III) | Fe reduction | Gold modified carbon microelectrode ensemble [191] Thick film modified graphite electrode [192] |
| H2S | Oxidation of reduced S- species | Gold and ceramic based electrodes for measurement at high temperature and pressure [189] Carbon nanotube modified glassy electrodes [193] |
| NO2- | Nitrite oxidation, anoxic ammonium oxidation | Cellulose modified platinum electrodes [194] |
| NO3- | Nitrate reduction | Cellulose modified platinum electrodes [194] Silver microelectrode with miniaturised sensing system [195] |
| Fe(II) | Fe oxidation | Au/Hg microelectrodes [196] Gold modified carbon microelectrode ensemble [195] |
| Co | Trace metal oxidations, trace metal reductions | Bismuth microelectrode array [197] |
| As | Trace metal oxidations, trace metal reductions | Gold nanoelectrode ensembles [198] Gold modified carbon screen printed electrodes [199] |
| Mn | Trace metal oxidations, trace metal reductions | Voltammetric microelectrodes [196] Vibrating gold microwires [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
