Submitted:
27 September 2025
Posted:
29 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
| Traditional Name | Frequency Range | Functional Name | Center Frequency | Primary Function | Octave Relationships | Field Resonance Properties |
|---|---|---|---|---|---|---|
| (Not recognized) | 0.01-0.1 Hz | Om Rhythms | ~0.05 Hz | Brain-body coupling | 1:2 with breathing (~0.1 Hz), 1:25 with heart (~1.25 Hz) | Whole-organism coordination |
| (Not recognized) | <1 Hz | Lam Rhythms | ~0.5-1 Hz | Deep restoration, sleep | 1:2 with Vam (~2.5 Hz) | Global brain synchronization |
| Delta | 0.5-4 Hz | Vam Rhythms | ~2.5 Hz | Integration, global states | 1:2 with Ram (~5 Hz), 2:1 with heart rate | Wavelength ~20 cm (brain-size) |
| Theta | 4-8 Hz | Ram Rhythms | ~5 Hz | Memory, organizing | 1:2 with Ham (10 Hz), 1:8 with Tam (40 Hz) | Hippocampal-cortical loops |
| Mu/Alpha | 8-12 Hz | Yam Rhythms | ~8-12 Hz | Motor simulation, mirror | Bridges Ram (5 Hz) and Gam (20 Hz) | Sensorimotor integration |
| Alpha | 8-13 Hz | Ham Rhythms | ~10 Hz | Attention, sensory gating | 1:2 with Ram (5 Hz), 1:2 with Gam (20 Hz) | Perfect binary center |
| Spindles/Sigma | 12-14 Hz | Sam Rhythms | ~12-14 Hz | Sleep spindles, consolidation | Near-octave with Yam and Gam | Thalamo-cortical loops |
| Beta | 13-30 Hz | Gam Rhythms | ~20 Hz | Motor control, maintenance | 1:2 with Ham (10 Hz), 1:2 with Tam (40 Hz) | Stabilization fields |
| Gamma | 30-80 Hz | Tam Rhythms | ~40 Hz | Binding, conscious perception | 1:8 with Ram (5 Hz), 1:2 with Krim (80 Hz) | Mini-column resonance |
| High Gamma | 80-200 Hz | Krim Rhythms | 80-160 Hz | Local processing, plasticity | 80 Hz = 2×Tam, 160 Hz = 2×80 Hz | Millimeter-scale fields |
| (Not recognized) | >200 Hz | Shrim Rhythms | >200 Hz | Ultra-fast processing | Continues binary sequence (320, 640 Hz) | Sub-millimeter precision |
2. The Critical Flaws of Current Nomenclature
2.1. Arbitrary Alphabetical Sequencing Obscures Functional Architecture
2.2. Oversimplified Frequency Ranges Obscure Center Frequency Dynamics
2.3. Critical Omissions: Functionally Distinct Rhythms Ignored by DTABG
2.4. Failure to Recognize Octave Patterns and Field Resonance Principles
3. Evidence for Functional Conservation and Octave Organization Across Species
3.1. Cross-Species Stability and Evolutionary Conservation
3.2. Harmonic Relationships and Cross-Frequency Coupling
3.3. Binary Frequency Architecture as an Evolutionary Optimization
3.4. Electromagnetic Field Computing and Information Density Scaling
4. Proposed Functional Taxonomy System
4.1. Foundational Principles
4.1.1. The Principle of Function-First Naming
4.1.2. The Principle of Octave Organization
4.1.3. Cross-Species Validity
4.1.4. Coupling Compatibility
4.2. Comprehensive Functional Categories with Octave Relationships
4.2.1. Om Rhythms (0.01-0.1 Hz) - Brain-Body Coupling
4.2.2. Lam Rhythms (<1 Hz) - Deep Restoration
4.2.3. Vam Rhythms (~2.5 Hz) - Integration
4.2.4. Ram Rhythms (~5 Hz) - Organizing and Memory
4.2.5. Yam Rhythms (~8-12 Hz) - Motor Simulation
4.2.6. Ham Rhythms (~10 Hz) - Attention
4.2.7. Sam Rhythms (~12-14 Hz) - Sleep Spindles and Memory Consolidation
4.2.8. Gam Rhythms (~20 Hz) - Control
4.2.9. Tam Rhythms (~40 Hz) - Binding
4.2.10. Krim Rhythms (80-200 Hz) - High-Frequency Processing
4.2.11. Shrim Rhythms (>200 Hz) - Ultra-High Frequency
5. Advantages of the Functional System with Octave Organization
5.1. Scientific Coherence and Electromagnetic Field Computing
5.2. Clinical Applications and Precision Neuromodulation
5.3. Theoretical Unification with Physics and Consciousness Studies
5.4. Educational Clarity and Research Integration
6. Implementation Challenges and Future Directions
6.1. Measuring and Validating Octave Relationships
6.2. Individual Variations and Frequency Tuning
6.3. Transitioning from DTABG to Functional Nomenclature
7. Conclusion
References
- Anastassiou, C. A.; Perin, R.; Markram, H.; Koch, C. Ephaptic coupling of cortical neurons. Nature Neuroscience 2011, 14(2), 217–223. [Google Scholar] [CrossRef] [PubMed]
- Berger, H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 1929, 87(1), 527–570. [Google Scholar] [CrossRef]
- Buzsáki, G. Rhythms of the Brain; Oxford University Press, 2006. [Google Scholar]
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304(5679), 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Canolty, R. T.; Knight, R. T. The functional role of cross-frequency coupling. Trends in Cognitive Sciences 2010, 14(11), 506–515. [Google Scholar] [CrossRef] [PubMed]
- Fries, P. Rhythms for cognition: Communication through coherence. Neuron 2015, 88(1), 220–235. [Google Scholar] [CrossRef] [PubMed]
- Hunt, T.; Klimesch, W. The heart of the field: Frequency is fundamental. In preparation. 2024. [Google Scholar]
- Hunt, T.; Schooler, J. W. The easy part of the hard problem: A resonance theory of consciousness. Frontiers in Human Neuroscience 2019, 13, 378. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.; Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences 2007, 11(7), 267–269. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews 1999, 29(2-3), 169–195. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences 2012, 16(12), 606–617. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. The frequency architecture of brain and brain body oscillations: An analysis. European Journal of Neuroscience 2018, 48(7), 2431–2453. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, P.; Shah, A. S.; Knuth, K. H.; Ulbert, I.; Karmos, G.; Schroeder, C. E. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology 2005, 94(3), 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J. E.; Jensen, O. The theta-gamma neural code. Neuron 2013, 77(6), 1002–1016. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P. L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press, 2006. [Google Scholar]
- Penttonen, M.; Buzsáki, G. Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems 2003, 2(2), 145–152. [Google Scholar] [CrossRef]
- Rassi, E.; Dorffner, G.; Gruber, W.; Schabus, M.; Klimesch, W. Coupling and decoupling between brain and body oscillations. Neuroscience Letters 2019, 711, 134401. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Larios, J.; Faber, P.; Achermann, P.; Tei, S.; Alaerts, K. From thoughtless awareness to effortful cognition: alpha-theta cross-frequency dynamics in experienced meditators during meditation, rest and arithmetic. Scientific Reports 2020, 10, 5419. [Google Scholar] [CrossRef] [PubMed]
- Tort, A. B.; Komorowski, R.; Eichenbaum, H.; Kopell, N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology 2010, 104(2), 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- Voytek, B.; Canolty, R. T.; Shestyuk, A.; Crone, N.; Parvizi, J.; Knight, R. T. Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Frontiers in Human Neuroscience 2010, 4, 191. [Google Scholar] [CrossRef] [PubMed]
- Young, A. S.; Hunt, T.; Ericson, M. The slowest shared resonance: A review of electromagnetic field oscillations between central and peripheral nervous systems. Frontiers in Human Neuroscience 2022, 15, 796455. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).