Submitted:
24 September 2025
Posted:
25 September 2025
You are already at the latest version
Abstract
Northern corn leaf blight (NCLB), caused by the hemibiotrophic fungus Exserohilum turcicum, is a major foliar disease of maize worldwide. Reducing dependence on chemical fungicides requires the development of sustainable strategies to manage foliar diseases in economically important crops. As an eco-friendly alternative, we evaluated a biocontrol agent previously isolated in our laboratory (Bacillus velezensis EM-A8; GenBank accession number OL704805) and investigated its effects on maize under both greenhouse and field conditions. The aims of this study were: (i) characterize phytohormone production in two different formulations containing the biocontrol agent; (ii) assess the influence of the bacterium on plant biomass and yield; (iii) compare the efficacy of the two formulations in controlling NCLB under field conditions; and (iv) determine whether the formulations affected salicylic acid and phenolic compound levels in maize tissues. Our results showed that B. velezensis EM-A8 synthesized a broad spectrum of phytohormones, including salicylic acid, indoleacetic acid, indolebutyric acid, jasmonic acid, abscisic acid and gibberellic acid, as well as cytokinins such as kinetin, zeatin, and 6-benzylaminopurine. Foliar application of the bacterium increased maize dry biomass by 30%. In field trials, both formulations effectively suppressed NCLB, reducing the number of symptomatic leaves by 25–50% relative to untreated controls. Furthermore, treated plants exhibited yield increases exceeding 1,000 kg/ha. In conclusion, formulations containing B. velezensis EM-A8 provided effective biocontrol of E. turcicum while simultaneously enhancing maize grain yield under field conditions.
Keywords:
1. Introduction
2. Materials and methods
2.1. Inoculum preparation
2.2. Biostimulant activity of B. velezensis EM-A8 under greenhouse conditions
2.3. Phytohormone determination and quantification in bacterial formulations
2.4. Field Trials
2.4.1. NCLB severity and number of affected leaves
2.4.2. Leaf phenolic compound level
2.4.3. Yield components
2.5. Statistical analysis
3.1. Biostimulant activity of B. velezensis EM-A8 in the greenhouse trial
3.2. Phytohormones detection and quantification in formulations
3.3. Field trial
3.3.1. NCLB severity and number of affected leaves
3.3.2. Leaf phenolic compound concentration
3.3.3. Yield components
4. Discusion
5. Conclusions
Funding
Conflicts of Interest
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). 2024. FAOSTAT, Statistical Databases. Agriculture, Fisheries, Forestry, Nutrition. Rome. http://faostat.fao.org/default. Consulted on July, 2024.
- Bolsa de Comercio de Rosario (2025). In: https://www.bcr.com.ar/es/mercados/gea/estimaciones-nacionales-de-produccion/estimaciones. Consulted on September, 2025.
- Carmona, M.A.; Sautua, F.J. ‘¿Cuándo Es Realmente Necesario Aplicar Fungicidas En Maíz ? When To Consider Foliar Fungicide Applications on Corn ?’ Agronomía 2021, 41, 149–161. [Google Scholar]
- De Rossi, R.L.; Reis, E.M.; Brustolin, R. Morfologia de conídios e patogenicidade de isolados de Exserohilum turcicum da Argentina e do Brasil em milho. Summa Phytopathol. 2015, 41, 58–63. [Google Scholar] [CrossRef]
- Pratt, R.C.; Gordon, S.G. ‘Breeding for Resistance to Maize Foliar Pathogens’, in Plant Breeding Reviews, vol. 27, John Wiley & Sons, Ltd, 2010, pp. 119–173. [CrossRef]
- Sucher, J.; Boni, R.; Yang, P.; Rogowsky, P.; Büchner, H.; Kastner, C.; Kumlehn, J.; Krattinger, S.G.; Keller, B. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol. J. 2016, 15, 489–496. [Google Scholar] [CrossRef]
- Hurni, S.; Scheuermann, D.; Krattinger, S.G.; Kessel, B.; Wicker, T.; Herren, G.; Fitze, M.N.; Breen, J.; Presterl, T.; Ouzunova, M.; et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl. Acad. Sci. 2015, 112, 8780–8785. [Google Scholar] [CrossRef] [PubMed]
- Sibiya, J.; Tongoona, P.; Derera, J. Combining ability and GGE biplot analyses for resistance to northern leaf blight in tropical and subtropical elite maize inbred lines. Euphytica 2012, 191, 245–257. [Google Scholar] [CrossRef]
- Formento, N.A. ‘Enfermedades foliares reemergentes del cultivo de maíz: (Puccinia sorghi y Puccinia polysora), tizón foliar (Exserohilum turcicum) y mancha ocular (Kabatiella zeae)’, Estacion Experimental Agropecuaria Paraná, pp. 89–100, 2010, [Online]. Available: https://inta.gob.ar/sites/default/files/script-tmp-act-tecnica-n2_16_enfermedades-foliares-reemergentes-.pdf.
- Andrade, F.H.; Vega, C.; Uhart, S.; Cirilo, A.; Cantarero, M.; Valentinuz, O. Kernel number determination in maize. Crop. Sci. 1999, 39, 453–459. [Google Scholar] [CrossRef]
- Couretot, L.; Parisi, L.; Ferraris, G.; Magnone, G. ‘Efecto de fungicidas foliares y momento de aplicación sobre la severidad de tizón foliar y enfermedades de raíz y tallo en maíz’, XIV Jornadas Fitosanitarias Argentinas, vol. 8, pp. 4–11, 2012.
- gráficos FAO’.
- De Rossi, R.; Guerra, F.; Plazas, M.; Vuletic, E.; Brücher, E.; Guerra, G.; Reis, E. Crop damage, economic losses, and the economic damage threshold for northern corn leaf blight. Crop. Prot. 2022, 154. [Google Scholar] [CrossRef]
- Thomashow, L.S. Biological control of plant root pathogens. Curr. Opin. Biotechnol. 1996, 7, 343–347. [Google Scholar] [CrossRef]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef]
- Sartori, M.; Nesci, A.; Formento, Á.; Etcheverry, M. Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize. Rev. Argent. de Microbiol. 2015, 47, 62–71. [Google Scholar] [CrossRef]
- Sartori, M.; Nesci, A.; Montemarani, A.; Barros, G.; García, J.; Etcheverry, M. Preliminary Evaluation of Biocontrol Agents against Maize Pathogens Exserohilum turcicum and Puccinia sorghi in Field Assays. Agric. Sci. 2017, 08, 1003–1013. [Google Scholar] [CrossRef]
- Sartori, M.; Nesci, A.; García, J.; Passone, M.A.; Montemarani, A.; Etcheverry, M. Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize. Rev. Argent. de Microbiol. 2017, 49, 75–82. [Google Scholar] [CrossRef]
- Cheng, T.; Yao, X.-Z.; Wu, C.-Y.; Zhang, W.; He, W.; Dai, C.-C. Endophytic Bacillus megaterium triggers salicylic acid-dependent resistance and improves the rhizosphere bacterial community to mitigate rice spikelet rot disease. Appl. Soil Ecol. 2020, 156. [Google Scholar] [CrossRef]
- Kulimushi, P.Z.; Basime, G.C.; Nachigera, G.M.; Thonart, P.; Ongena, M. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu. Environ. Sci. Pollut. Res. 2017, 25, 29808–29821. [Google Scholar] [CrossRef]
- Vlot, A.C.; Dempsey, D.M.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, D.A.; Klessig, D.F. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol. 2017, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Forchetti, G.; Masciarelli, O.; Izaguirre, M.J.; Alemano, S.; Alvarez, D.; Abdala, G. Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr. Microbiol. 2010, 61, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 2019, 50, 29–36. [Google Scholar] [CrossRef]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant-Microbe Interactions® 2018, 31, 871–888. [Google Scholar] [CrossRef]
- Balzarini, M.G. , Gonzalez L., Tablada M., Casanoves F., Di Rienzo J.A., Robledo C.W. (2008). Manual del Usuario, Editorial Brujas, Córdoba, Argentina.
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzales, L.; Tablada, M.; Robledo, C.W. InfoStat versión Grupo InfoStat, FCA, Universidad Nacional de Córdova, Argentina. Available online: http://www.infostat.com.ar (accessed on day month year).
- Balderas-Ruíz, K.A.; Bustos, P.; Santamaria, R.I.; González, V.; Cristiano-Fajardo, S.A.; Barrera-Ortíz, S.; Mezo-Villalobos, M.; Aranda-Ocampo, S.; Guevara-García, Á.A.; Galindo, E.; et al. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express 2020, 10, 1–19. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5. [Google Scholar] [CrossRef]
- Elhakem, A.H. Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant, Soil Environ. 2020, 66, 533–541. [Google Scholar] [CrossRef]
- Ali, Q.; Ahmad, M.; Kamran, M.; Ashraf, S.; Shabaan, M.; Babar, B.H.; Zulfiqar, U.; Haider, F.U.; Ali, M.A.; Elshikh, M.S. Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance. Plants 2023, 12, 2519. [Google Scholar] [CrossRef]
- Li, Y.; Han, X.; Ren, H.; Zhao, B.; Zhang, J.; Ren, B.; Gao, H.; Liu, P. Exogenous SA or 6-BA maintains photosynthetic activity in maize leaves under high temperature stress. Crop. J. 2023, 11, 605–617. [Google Scholar] [CrossRef]
- Song, W.; Shao, H.; Zheng, A.; Zhao, L.; Xu, Y. Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses. Plants 2023, 12, 3475. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, M.; Fan, T.; Mu, X.; Gao, J.; Wang, Y.; Jing, T.; Shi, C.; Niu, H.; Zhen, S.; et al. Underlying mechanism of accelerated cell death and multiple disease resistance in a maizelethal leaf spot 1allele. J. Exp. Bot. 2022, 73, 3991–4007. [Google Scholar] [CrossRef] [PubMed]
- Cowling, C.L.; Dash, L.; Kelley, D.R. Roles of auxin pathways in maize biology. J. Exp. Bot. 2023, 74, 6989–6999. [Google Scholar] [CrossRef]
- Yue, K.; Lingling, L.; Xie, J.; Coulter, J.A.; Luo, Z. Synthesis and regulation of auxin and abscisic acid in maize. Plant Signal. Behav. 2021, 16, 1891756. [Google Scholar] [CrossRef]
- Keswani, C.; Singh, S.P.; Cueto, L.; García-Estrada, C.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Singh, S.P.; Blázquez, M.A.; Sansinenea, E. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 8549–8565. [Google Scholar] [CrossRef]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; Asaf, S.; Lee, K.-E.; Park, Y.-G.; Kim, A.-Y.; Khan, M.A.; You, Y.-H.; Lee, I.-J. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Interactions 2019, 14, 416–423. [Google Scholar] [CrossRef]
- Y. Liu et al., ‘‘Comparative proteomic analysis revealed maize (Zea mays L.) response to Setosphaeria turcica early infection’, 2020. [CrossRef]
- Tayyab, N.; Naz, R.; Yasmin, H.; Nosheen, A.; Keyani, R.; Sajjad, M.; Hassan, M.N.; Roberts, T.H. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLOS ONE 2020, 15, e0232269. [Google Scholar] [CrossRef]
- Poveda, J.; González-Andrés, F. Bacillus as a source of phytohormones for use in agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 8629–8645. [Google Scholar] [CrossRef]
- Barciszewski, J.; Massino, F.; Clark, B.F. Kinetin—A multiactive molecule. Int. J. Biol. Macromol. 2007, 40, 182–192. [Google Scholar] [CrossRef]
- Abdelaal, K.A.A.; Attia, K.A.; Alamery, S.F.; El-Afry, M.M.; Ghazy, A.I.; Tantawy, D.S.; Al-Doss, A.A.; El-Shawy, E.-S.E.; Abu-Elsaoud, A.M.; Hafez, Y.M. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability 2020, 12, 1736. [Google Scholar] [CrossRef]
- Ahmad, I.; Kamran, M.; Ali, S.; Cai, T.; Bilegjargal, B.; Liu, T.; Han, Q. Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions. Environ. Sci. Pollut. Res. 2018, 25, 33225–33239. [Google Scholar] [CrossRef]
- Elahi, N.N.; Raza, S.; Rizwan, M.S.; Albalawi, B.F.A.; Ishaq, M.Z.; Ahmed, H.M.; Mehmood, S.; Imtiaz, M.; Farooq, U.; Rashid, M.; et al. Foliar Application of Gibberellin Alleviates Adverse Impacts of Drought Stress and Improves Growth, Physiological and Biochemical Attributes of Canola (Brassica napus L.). Sustainability 2022, 15, 78. [Google Scholar] [CrossRef]
- Shah, S.H.; Islam, S.; Mohammad, F.; Siddiqui, M.H. Gibberellic Acid: A Versatile Regulator of Plant Growth, Development and Stress Responses. J. Plant Growth Regul. 2023, 42, 7352–7373. [Google Scholar] [CrossRef]
- Cui, W.; Song, Q.; Zuo, B.; Han, Q.; Jia, Z. Effects of gibberellin (Ga4+7) in grain filling, hormonal behavior, and antioxidants in high-density maize (zea mays L.). Plants 2020, 9, 978. [Google Scholar] [CrossRef] [PubMed]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 2008, 54, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Dary, M.; Chamber-Pérez, M.; Palomares, A.; Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 2010, 177, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, J.E.; Nie, H.; Lee, Y.J.; Kim, S.-H. Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS. Genes Genom. 2017, 40, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kuan, K.B.; Othman, R.; Rahim, K.A.; Shamsuddin, Z.H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLOS ONE 2016, 11, e0152478. [Google Scholar] [CrossRef]
- Saleem, M.; Asghar, H.N.; Zahir, Z.A.; Shahid, M. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 2018, 195, 606–614. [Google Scholar] [CrossRef]
- Velasco-Jiménez, A.; Castellanos-Hernández, O.; Acevedo-Hernández, G.; Aarland, R.C.; Rodríguez-Sahagún, A. ‘Bacterias rizosféricas con beneficios potenciales en la agricultura’, REVISTA TERRA LATINOAMERICANA, vol. 38, no. 2, 2020.
- Fathi, F.; Saberi-Riseh, R.; Khodaygan, P. Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. Int. J. Biol. Macromol. 2021, 183, 627–634. [Google Scholar] [CrossRef]
- Vasmatkar, P.; Kaur, K.; Pannu, P.; Kaur, G.; Kaur, H. Unraveling the metabolite signatures of maize genotypes showing differential response towards southern corn leaf blight by 1H-NMR and FTIR spectroscopy. Physiol. Mol. Plant Pathol. 2019, 108. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Wallis, C.M.; Galarneau, E.R.-A. Phenolic Compound Induction in Plant-Microbe and Plant-Insect Interactions: A Meta-Analysis. Front. Plant Sci. 2020, 11, 580753. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Zhang, S.; Yu, H.; Pan, H.; Zhang, H. Klebsiella jilinsis 2N3 promotes maize growth and induces resistance to northern corn leaf blight. Biol. Control. 2021, 156. [Google Scholar] [CrossRef]
- Ding, T.; Su, B.; Chen, X.; Xie, S.; Gu, S.; Wang, Q.; Huang, D.; Jiang, H. An endophytic bacterial strain isolated from eucommia ulmoides inhibits southern corn leaf blight. Front. Microbiol. 2017, 8, 903. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Han, H.; Hou, J.; Bao, F.; Tan, H.; Lou, X.; Wang, G.; Zhao, F. Control of Maize Sheath Blight and Elicit Induced Systemic Resistance Using Paenibacillus polymyxa Strain SF05. Microorganisms 2022, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Satorre, E. H. , Benech, R., Slafer, G. A., De la Fuente, E. B., Miralles, D. J., Otegui, M. E., & Savin, R. (2003). Producción de granos: bases funcionales para su manejo. Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
