Submitted:
15 September 2025
Posted:
17 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. 3D Printing as a Relatively Novel Manufacturing Method
3. A Brief Overview of the 3DP Applications in Healthcare [14,15,16,17,29]
3.1. Virtual Surgical Planning, VSP, and Training [41,63,133,134,135]
3.2. 3DP of Medical Devices Including Implants and Prostheses [45,102]
Implants and Prostheses [78,92,93,94,95,103,105,176,192,193,194,195,196,197]
3.3. The Application of 3DP at Point-of-Care, PoC [6,211,212,213,214,215]
3.4. 3D Bioprinting of Tissue and Organs
4. Future Prospects of Applications of 3DP in Surgery and Beyond
References
- Digital Surgery, Atalla, S. Ed.; Springer, 2020. [CrossRef]
- Rifkin, J. Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy and the World; Palgrave Macmillan, 2011.
- http://reports.weforum.org/future-of-jobs-2016/preface/ (accessed on 29 Aug 2025).
- d’Aveni, R.; May 2015, The 3-D printing revolution. https://hbr.org/2015/05/the-3-d-printing-revolution (accessed on 15 Aug. 2025).
- Olson, P.D. 5 March 2018, 100,000 Patients Later, The 3D-Printed Hip Is A Decade Old And Going Strong. https://www.odtmag.com/breaking-news/100000-patients-later-the-3d-printed-hip-is-a-decade-old-and-going-strong/ (accessed on 25 Aug 2025).
- Griffiths, L. 16 June 2025, Mobilising medical: How MGA is taking on the challenge of getting 3D printing into healthcare systems. https://www.tctmagazine.com/additive-manufacturing-3d-printing-industry-insights/healthcare-medical-dental-and-bioprinting-insights/mobilising-medical-challenge-getting-3d-printing-into-healthcare-systems/ (accessed on 26 Aug 2025).
- Toffler, A. Future shock. New York, NY: Random House, 1970.
- McClements, D. 8 Aug. 2022. https://www.xometry.com/resources/3d-printing/3d-printing-in-prosthetics/ (accessed on 2 Aug. 2025).
- https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/computed-tomography-ct-scan (accessed on 29 Aug. 2025).
- McKinstry, C.S. Nuclear magnetic resonance imaging in medicine. Ulster Med. J. 1986, 55(2), 97-111.
- 14 Sep 2015. https://www.abc.net.au/news/2015-09-14/cancer-patient-receives-3d-printed-rib-cage/6773188 (accessed on 29 Aug. 2025).
- Sharma, R. The 3D Printing Revolution You Have Not Heard About. Retrieved from http://www.forbes.com/sites/rakeshsharma/2013/07/08/the-3d-printing-revolution-you-have-not-heard-about/#3281e08221e1 (accessed on 2 Aug. 2023).
- Schweiger, J.; Edelhoff, D.; Gueth, J.-F. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J. Clinic. Med. 2021, 10, 2010. [CrossRef]
- Tsoulfas, G.; Bangeas, P.I.; Suri, J. 3D Printing: Applications in Medicine and Surgery, Elsevier, 2019.
- Suri, J.; Tsioukas, V.; Papadopoulos, V.N. 3D Printing: Applications in Medicine and Surgery, Elsevier, 2021.
- Ramadan, Q.; Zourob, M. 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. Front. Med. Technol. 2021, 2, 607648. https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2020.607648/full (accessed on 20 Aug. 2025). [CrossRef]
- Dodziuk, H. Applications of 3D printing in healthcare. Kardiochir. Torakochir. Pol. 2016, 13(3):283-293. https://pubmed.ncbi.nlm.nih.gov/27785150/ (accessed on 21 Aug. 2025). [CrossRef]
- Madelaine, P., 30 Jul. 2024, 10 Reasons why 3D Printing is considered sustainable https://www.3dnatives.com/en/10-reasons-why-3d-printing-is-considered-sustainable-300720244/ (accessed on 2 Aug. 2025).
- Moore, A. We’ve never seen anything like it. Witnessing coral death and resurrection. https://www.journals.uchicago.edu/doi/abs/10.1086/716237. [CrossRef]
- https://forward-am.com/ (accessed on 29 Aug. 2025).
- Claire, S. 20 Oct. 2022, An introduction to post-processing in 3D printing. https://www.3dnatives.com/en/introduction-post-processing-3d-printing-101020226/ (accessed on 12 Aug 2025).
- Karakurt, I.; Lin, L. 3D printing technologies: techniques, materials, post-processing. Curr. Opinion Chem. Eng. 2020, 28, 134-143.
- Malaty, E. 3D printing and IP law, Feb 2017. https://www.wipo.int/en/web/wipo-magazine/articles/3d-printing-and-ip-law-39896 (accessed on 21 Aug 2025).
- Ballardini, R.M.; Mimler, M.; Minssen, T. et al., 3D Printing, Intellectual Property Rights and Medical Emergencies: In Search of New Flexibilities. IIC – Int. Rev. Intell. Prop. Comp. Law 2022, 53(8), 1149–1173. [CrossRef]
- Knoedler, L.; Knoedler, S.; Kauke-Navarro, M. et al., Three-dimensional Medical Printing and Associated Legal Issues in Plastic Surgery: A Scoping Review. Plast. Reconstr. Surg. Glob. Open 2023, 11(4), e4965. [CrossRef]
- Clair, S. 31 May 2024, 3D printing and intellectual property: are the laws fit for purpose?. https://www.3dnatives.com/en/3d-printing-and-intellectual-property-are-the-laws-fit-for-purpose-150320235/ (accessed on 21 Aug 2025).
- Kutner, A.S. Liability for defective 3D printed products. https://www.askadamskutner.com/product-defects/defective-3d-printed-products/ (accessed on 4 Aug. 2025).
- Sik, W.M. 14 May 2023, Choosing 3D printing materials for different medical applications. https://www.novusls.com/post/medical-3d-printing-material-selection-guide (accessed on 2 Aug. 2025).
- 3D Printing in Medicine, Kalaskar, D.M., Ed.; Woodhead Publishing Series in Biomaterials, Elsevier, 2022.
- Boskurt, Y; Karayel, E. 3D printing technology: methods, biomedical applications, future apportunities and trends. J. Mater. Res. Technol. 2021, 14, 1430-1450.
- Ameta, K.L.; Solanki, V.S.; Singh, V. et al., Critical appraisal and systematic review of 3D & 4D printing in sustainable and environment-friendly smart manufacturing technologies. Sust. Mater. Technol. 2022, 34, e00481, 21 Aug 2025 (accessed on 21 Aug 2025). [CrossRef]
- Ramezani, M.; Ripin, Z.M. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. J. Funct. Biomater. 2024, 14(7), 347, https://www.mdpi.com/2079-4983/14/7/347 (accessed on 21 Aug. 2021). [CrossRef]
- Mandal, A.; Chatterjee, K. 4D printing for biomedical applications. J. Mater. Chem. B 2024, 12, 2985-3005. https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00006d (accessed on 21 Aug 2025).
- Saunders, S. 12 June 2017, Chinese researchers use 4D printing technology to construct breast implant for cancer patient. https://3dprint.com/177588/4d-printing-breast-implant (accessed on 4 Aug. 2025).
- Deng, C.; Liu, Y.; Fan, X. et al., Femtosecond laser 4D printing of light-driven intelligent micromachines. Adv. Funct. Mater. 2023, 33(11), 2211473, 2023. [CrossRef]
- Zelis, J.M.; Meiburg, R.; Roijen, J.J. et al., 3D-printed stenotic aortic valve model to simulate physiology before, during, and after transcatheter aortic valve implantation. Int. J. Cardiol. 2020, 313, 32-35. [CrossRef]
- Meister, M.; Luijten, G.; Gsaxner, C. et. al., 12 Apr. 2024, A meta-review about medical 3D printing. medRxiv (accessed on 10 Feb. 2025). [CrossRef]
- Martelli, N.; Serrano, C.; van den Brink, H. et al., Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 2016, 159(6), 1485-1500. [CrossRef]
- Calvo-Haro, J.A.; Pascau, J.; Mediavilla-Santos, L. et al., Conceptual evolution of 3D printing in orthopedic surgery and traumatology: from do it yourself to point of care manufacturing. BMC Musculoskelet. Disord. 2021, 22, 360. [CrossRef]
- Shaylor, R.; Golden, E.; Verenkin, V. et al., Virtual reality and 3D printing in clinical anesthesia: a case series of two years' experience in a single tertiary medical centre. Can. J. Anaesth. 2023, 70(9), 1433-1440. [CrossRef]
- Tejo-Otero, A.; Buj-Corral, I.; Fenollosa-Artes, F. 3D printing in medicine for preoperative surgical planning: a review. Ann. Biomed. Eng. 2020, 48(2), 536-555. [CrossRef]
- Bhattacharya, S.; Bhattacharya, N.; Bhattacharya, K. Role of 3D Printing in Surgery. Ind. J. Surg. 2023, 85, 1319–1322. [CrossRef]
- Ghai, S.; Sharma, Y.; Jain, N. et al., Use of 3-D printing technologies in craniomaxillofacial surgery: a review. Oral Maxillofac. Surg. 2018, 22, 249-259, https://link.springer.com/article/10.1007/s10006-018-0704-z (accessed on 9 Mai 2025). [CrossRef]
- Bücking, T.M.; Hill, E.R.; Robertson, J.L. et al., From medical imaging data to 3D printed anatomical models. PLOS ONE 2017, 12(5), e0178540. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178540. [CrossRef]
- Banga, H.K.; Kalra, P.; Belokar, R.M. et al., Design and Fabrication of Prosthetic and Orthotic Product by 3D Printing, in Prosthetics and Orthotics. Arazpour, M. Ed.; 2020. https://www.intechopen.com/chapters/74125.
- Hecker, A.; Tax, L.; Giese, B. et al., Clinical applications of three-dimensional printing in upper extremity surgery: a systematic review. J. Pers. Med. 2023, 13, 294. [CrossRef]
- Carlota V., 2 June, 2025, 3D printed medical implants: discover some of the most innovative projects. https://www.3dnatives.com/en/best-3d-printed-implants-230720195/ (accessed on 13 Aug. 2025).
- Matias, M.; Zenha, H.; Costa, H. Three-Dimensional Printing: Custom-Made Implants for Craniomaxillofacial Reconstructive Surgery. Craniomaxil. Trauma Reconstr. 2017, 10(2), 89–98. [CrossRef]
- Vorndran, E.; Moseke, C.; Gbureck, U. 3D printing of ceramic implants. MRS Bull. 2015, 40, 127-136. https://link.springer.com/article/10.1557/mrs.2015.326 (accessed on 21 Aug 2025). [CrossRef]
- Ly, M.; Spinelli, S.; Hays, S; et al., 3D Printing of Ceramic Biomaterials. Eng. Regen. 2022, 3(1) 41-52, 2022https://www.sciencedirect.com/science/article/pii/S2666138122000068 (accessed on 21 Aug 2025). [CrossRef]
- Zaszczyńska, A.; Moczulska-Heljak, M.; Gradys, A. et al., B. Grigolo, Academic Editor, Advances in 3D Printing for Tissue Engineering. Mater. (Basel) 2021, 14(12), 3149. [CrossRef]
- 3D Printed Organs: How, Why & When. The Potential of Organ Printing. https://www.cellink.com/blog/3d-printed-organs/ (accessed on 21 Aug 2025).
- Revolutionising healthcare: bioprinting takes a leap forward in 2024. https://www.medicaldevice-network.com/analyst-comment/3d-printing-human-organs/?cf-view (accessed on 21 Aug 2025).
- Zhang, B.; Gao, L.; Ma, L.; et al., 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engin., 2019, 5(4), 777-794, https://www.sciencedirect.com/science/article/pii/S2095809918311470 (accessed on 21 Aug 2025). [CrossRef]
- Apr 17, 2024, The Next Generation of 3D Printed Surgical Instruments. https://formlabs.com/blog/3d-printed-surgical-instruments/ (accessed on 21 Aug 2025).
- 3D printing of devices. https://formlabs.com/eu/blog/3d-printing-medical-devices/, there is a webinar on this webpage on 3D printed medical devices for precision surgery (accessed on 21 Aug 2025).
- Chen, G.; Xu, Y.; Kwok, P.C.L. et al., Pharmaceutical applications of 3D printing. Addit. Manufact. 2020, 34, 101209. https://www.sciencedirect.com/science/article/abs/pii/S2214860420305819 (accessed on 21 Aug 2025).
- Serrano, D.R.; Kara, A.; Yuste, I.; et al., 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023, 15(2), 313. https://www.mdpi.com/1999-/4923/15/2/313 (accessed on 21 Aug 2025). [CrossRef]
- Tian, Y.; Chen, C.X.; Xu, X.; et al., A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 9950131. [CrossRef]
- Prasad. S.; Kader, N.A.; Sujatha, G. et al., 3D printing in dentistry. J. 3D Print. Med. 2(3), 89-91, 2018. [CrossRef]
- Yang, M.; Zeng, Q.; Vieira, M.P. et al., Three-dimensional Printing in Dentistry: An Advanced Technology for Craniofacial Regeneration. in Mesenchymal Stem Cells and Craniofacial Regeneration, Wang, J.; Lin, Y., Eds.; 33-59 (27), 2016. [CrossRef]
- Chen, W.-L.; Yang, T.-L.; Wang, J.-N. et al., Application of Three-Dimensional Printing in Surgical Planning for Medical Application. in Advances in 3D Printing, Sharma, A. Ed,: IntechOpen 2023. [CrossRef]
- Ganguli, A.; Pagan-Diaz, G.J.; Grant, L. et al., 3D printing for preoperative planning and surgical training: a review. Biomed. Microdev. 2018, 20, 65. [CrossRef]
- Bernhard, J.-C.; Izutami, S.; Matsugasumi, T. et al., Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 2016, 34(3), 337-345. [CrossRef]
- O’Brien, E.K.; Wayne, D.B.; Barsness, K.A. et al. Use of 3D Printing for Medical Education Models in Transplantation Medicine: a Critical Review. Curr. Transpl. Rep. 2016, 3, 109–119. [CrossRef]
- Biglino, G.; Capelli, C.; Koniordu, D. et al., Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenit. Heart Dis. 2017, 12(1), 113-118. [CrossRef]
- Biglino, G.; Capelli, C.; Wray, J. et al., 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open, 2015, 5(4), e007165. https://bmjopen.bmj.com/content/5/4/e007165 (accessed on 17 July 2025).
- Biglino, G.; Milano, E.G.; Capelli, C., et al., Three-dimensional printing in congenital heart disease: Considerations on training and clinical implementation from a teaching session. Int. J. Artif. Org. 2019, 42(10), 595-599. [CrossRef]
- Traynor, G; Shearn, I.U.; Milano, E.G., et al., The use of 3D-printed models in patients communication: a scoping review. J. 3D Print. Med. 2022, 6(1), 13-23. [CrossRef]
- https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j5-digital-anatomy-printer/ (accessed on 18 July 2025).
- https://www.fda.gov/medical-devices/products-and-medical-procedures/3d-printing-medical-devices (accessed on 5 Aug 2025).
- Desai, J.P.; Sheng, J.; Cheng, S.S. et al., Towards Patient-Specific 3D-Printed Robotic Systems for Surgical Interventions. IEEE Trans. Med. Robot. Bionics 2019, 1(2), 77-87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517608/ (accessed on 12 Aug 2025). [CrossRef]
- Checcucci, E.; De Cillis, S.; Porpiglia, F. 3d-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: A systematic review of the newest evidences. Curr. Opin. Urol. 2020, 30, 55-64. [CrossRef]
- Wake, N.; Nussbaum, J.E.; Elias, et al., M.I. 3D Printing, Augmented Reality, and Virtual Reality for the Assessment and Management of Kidney and Prostate Cancer: A Systematic Review. Urology 2020, 143, 20-32. [CrossRef]
- Thayaparan, G.K.; Owbridge, M.G.; Thompson, R.G. et al., Designing patient-specific 3D printed devices for posterior atlantoaxial transarticular fixation surgery. J. Clinic. Neurosci. 2018, 56, 192-198. [CrossRef]
- https://www.eos.info/industries/medical (accessed on 30 Aug. 2025).
- Materialise. Materialise First Company to Receive FDA Clearance for Diagnostic 3D-Printed Anatomical Models, 2018. Available online: www.materialise.com/en/press-releases/materialise-first-company-to-receive-fda-clearance-for-diagnostic-3d-printed-models (accessed on 9 May 202025).
- Wang, Z.; Yang, Y. Application of 3D Printing in Implantable Medical Devices. Biomed. Res. Int. 2021, 6653967, https://www.hindawi.com/journals/bmri/2021/6653967/ (accessed on 25 Aug 2025). [CrossRef]
- https://glia.org/products/stethoscope, (accessed on 30 Aug 2025).
- Ye, Y.; Ma, Y.; Fan, Z. et al., The effect of grid design on the performance of 3D-printed dry powder inhalers. Int. J. Pharmaceutics 2022, 627, 122230.
- https://cults3d.com/en/tags/inhaler, Download 54 3D print files tagged with keyword inhaler (accessed on 6 Aug. 2025).
- Selverai, A.; Kulkarni, A.; Pearce, J.M. Open-source 3-D printable autoinjector: Design, testing, and regulatory limitations. PLOS One 2023, 18(7), e0288696. [CrossRef]
- 22 Apr 2021. https://www.eurekalert.org/news-releases/719512. [CrossRef]
- 16 Jun 2021, Dubal, J. https://physicsworld.com/a/personalized-3d-printed-shields-protect-healthy-tissue-during-radiotherapy/ (accessed on 4 Aug 2025).
- Bochyńska, A.; Zawadzka, A.; Kukułowicz, P. et al., Application of 3D printing for personalized boluses in radiotherapy: a systematic review. Rep. Pract. Oncol. Radiother. 2025, 30(1),100-113. https://journals.viamedica.pl/rpor/article/view/104014 (accessed on 10 Feb. 2025).
- Grunewald, S.J. Doctors use 3D Printing to Safeguard an Unborn Baby's Life, https://3dprint.com/99905/3d-printing-to-safeguard-stetfetus/, 2015 (accessed 11 Aug. 2025).
- Dodziuk, H. 3D printing of normal and abnormal fetal hearts. https://dydaktyka.fizyka.umk.pl/Wystawy_archiwum/z_omegi/heart%203D.htm (accessed on 17 Aug. 2025).
- Cui, H.; Liu, C.; Esworthy, T. et al., 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 2020, 6(26), eabb5067. https://www.science.org/doi/10.1126/sciadv.abb5067 (accessed on 17 Aug. 2025). [CrossRef]
- Vaidya-Zannino, N. May 11, 2023, 3D Printing an Innovative Suturing Device for Minimally Invasive Surgery. https://bmf3d.com/resource/3d-printing-an-innovative-suturing-device/ (accessed on 21 Aug 2025).
- Zhang, H.; Chen, G.; Yu, Y. et al., Microfluidic printing of slippery textiles for medical drainage around wounds. Adv. Sci. 2020, 7(16), 2000789. (accessed on 21 Aug 2025). [CrossRef]
- Meng, M.; Wang, J.; Huang, H. et al., 3D printing metal implants in orthopaedic surgery: Methods, applications and future prospects. J. Orthop. Transl. 2023, 42, 94-112. [CrossRef]
- Wang, Y.; Min, L.; Lu, M. et al., The functional outcomes and complications of different reconstruction methods for giant cell tumor of the distal radius: comparison of Osteoarticular allograft and three-dimensional-printed prosthesis. BMC Muscosk. Dis. 2020, 21, 69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998256/ (accessed on 21 Aug 2025). [CrossRef]
- Lu, M.; Min, L.; Xiao, C. et al., Uncemented three-dimensional-printed prosthetic replacement for giant cell tumor of distal radius: a new design of prosthesis and surgical techniques. Cancer Manag. Res. 2028, 10, 265–277. [CrossRef]
- Rosenblum, C. A zoom presentation in the 3DHeals Program 3D Printed Orthopedic Implants, 1 Aug. 2024. https://3dheals.com/product/3d-printing-in-orthopedics/ (accessed on 21 Aug 2025).
- 23 Oct 2017, Morrison Hospital rebuilds cancerous jaws with 3D printing. https://www.bbc.com/news/uk-wales-41721216 (accessed on 22 Aug 2025).
- 2nd July 2024, Ceramic subperiosteal jaw implant, 3D printed by lithoz is placed in patient for first time ever. https://www.lithoz.com/en/ceramic-subperiosteal-jaw-implant-3d-printed-by-lithoz-is-placed-in-patient-for-first-time-ever/ (accessed on 8 Sep 2025).
- Di Luca, M.; Hoskins, C.; Corduas, F. et al., 3D printed biodegradable multifunctional implants for effective breast cancer treatment. Int. J. Pharmac. 2022, 629, 122363. https://www.sciencedirect.com/science/article/pii/S0378517322009188 (accessed on 17 Aug. 2025).
- Moroni, S.; Bingham, R.; Buckley, N. et al., 4D printed multipurpose smart implants for breast cancer management. Int. J. Pharmac. 2023, 642, 123154, https://www.sciencedirect.com/science/article/pii/S0378517323005744 (accessed on 30 Aug 2025). [CrossRef]
- Pearson, A. 4 Sep. 2020, A life changing procedure for those with conductive hearing loss. https://www.stratasys.com/en/resources/blog/worlds-first-middle-ear-transplant-facilitated-by-3d-printing-cures-deafness/ (accessed on 22 Aug 2025).
- Sokołowski, J.; Orłowski, A.; Lachowska, M. et al., 3D-printed custom ossicular prosthesis – methodology of design and LDV measurements in a cadaver study. Pol. J. Otolaryng. 2023, 77(3), 12-19. https://otolaryngologypl.com/article/162703/en (accessed on 22 Aug 2025).
- Jindal, S.; Manzoor, F.; Haslam, N. et al., 3D printed composite materials for craniofacial implants: current concepts, challenges and future directions. Int. J. Adv. Manuf. Technol. 2021, 112, 635–653. (accessed on 22 Aug 2025). [CrossRef]
- Niru, K. Top examples of 3D printed prostheses, 7 Apr. 2022. https://www.3dnatives.com/en/3d-prostheses-100420184/#! (accessed 9 Jul 2025).
- Woo, S.-H.; Sung, M.-J.; Park, K.-S. et al., Three-dimensional-printing Technology in Hip and Pelvic Surgery: Current Landscape. Hip Pelvis 2020, 32(1), 1–10. [CrossRef]
- Zhang, Y.-D.; Wu, R.-Y., Xie, D.-D. et al., Effect of 3D printing technology on pelvic fractures: a meta-analysis. China J. Orthop. Traumat. 2018, 31(5), 465-471. [CrossRef]
- Hazelden, B. 13 Mar 2023. https://www.medcentral.com/pain/spine/patient-specific-3d-implants-hold-promise-for-complex-spinal-surgeries, Patient-specific 3D implants hold promise for complex spinal surgeries, Insights from two surgeons who integrate 3D printing technology into their procedures (accessed on 11 Jul 2025).
- Wallace, N.; Schaffer, N.E.; Aleem, I.S et al., 3D-printed Patient-specific Spine Implants: A Systematic Review. Clin. Spine. Surg. 2020, 33(10), 400-407,. [CrossRef]
- Goehrke, S. 13 Nov 2014, 4WEB Medical Announces Major Milestone: Over 3,000 of their 3D printed spine truss implants in use. https://3dprint.com/24559/4web-3d-print-spine-implants/ (accessed on 22 Aug 2025).
- Wang, X.; Mu, M., Yan, J. et al., 3D printed materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness. Regen. Biomat. 2014, 11, rbae066, https://academic.oup.com/rb/article/doi/10.1093/rb/rbae066/7700740 (accessed on 27 May 2025). [CrossRef]
- Zoabi, A.; Redenski, I.; Oren, D. et al., 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. J. Clin. Med. 2022, 11(9), 2385. https://pmc.ncbi.nlm.nih.gov/articles/PMC9104292/#abstract1 (accessed on 22 Aug 2025). [CrossRef]
- https://enablingthefuture.org/2020/11/13/introducing-the-new-3d-printed-kinetic-hand-design/ accessed on 11 Jul 2024.
- https://www.notimpossible.com/projects, choose project Daniel (accessed 11 Jul 2025).
- Ramadan. Q.; Zourob, M. 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. Front. Med. Technol. 2021, 2, 607648. https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2020.607648/full (accessed on 25 Aug 2025). [CrossRef]
- Mallya, D.; Gadre, M.A.; Varadharadjan, S. et al., 3D bioprinting for the construction of drug testing models-development strategies and regulatory concerns. Front. Bioeng. Biotechnol. 2025, 13, https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2025.1457872/full (accessed on 131 Aug 2025). [CrossRef]
- Li, W.; Liu, Z.; Tang, F. et al., Application of 3D bioprinting in liver diseases. Micromach. (Basel) 2023, 14(8), 1648. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457767 (accessed on 5 Aug. 2025).
- Huang, Y.H.; Jakus, A.E.; Jordan, et al., S.W. Three-dimensionally printed hyperelastic bone scaffolds accelerate bone regeneration in critical-size calvarial bone defects. Plastic Reconstr Surg. 2019, 43, 1397. [CrossRef]
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 2018, 173, 188–193, /https://www.sciencedirect.com/science/article/pii/S0014483518302124 (accessed on 27 May 2025). [CrossRef]
- Baltazar, T.; Merola, J.; Catarino, C.M. et al., 3D bioprinting of a vascularized and perfusable skin graft using human keratinocytes. Tissue Eng. Part A. 2020, 26, 227–38. [CrossRef]
- Manita, P.G.; Garcia-Orue, I.; Santos-Viscaino, E. et al., 3D bioprinting of functional skin substitutes, from current achievements to future goals. Pharmac. 2021, 14(4), 362, https://pmc.ncbi.nlm.nih.gov/articles/PMC8070826/ (accessed on 11 May 2025). [CrossRef]
- Noor, N.; Shapira, A.; Edri, R. et al., 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 2019, 6, 1900344. https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.201900344 (accessed on 23 Aug 2025). [CrossRef]
- Asulin, M.; Michael, I.; Shapira, A. et al., One-step 3D printing of heart patches with built-in electronics for performance regulation. Adv. Sci. 2021, 8, 2004205. https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.202004205 (accessed on 17 Aug. 2025). [CrossRef]
- Wang, X.; Yang, C.; Yu, Y. et al., In situ 3D bioprinting living Photosynthetic scaffolds for autotrophic wound healing. Research 2022, 9794745. https://spj.science.org/doi/10.34133/2022/9794745 (accessed on 27 May 2025). [CrossRef]
- Javaid, M.; Haleem, A. 3D bioprinting applications for the printing of skin: A brief study. Sensors Int. 2021, 2, 100123, https://www.sciencedirect.com/science/article/pii/S2666351121000449?via%3Dihub (accessed on 27 May 2025). [CrossRef]
- Ma, Y.; Deng, B.; He, R. et al., Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024, 10(3), e24593. https://www.sciencedirect.com/science/article/pii/S2405844024006248 (accessed on 21 Aug 2025).
- Herrada-Manchon, H.; Celada, L.; Rodriguez-Gonzalez, D. et al., Three-dimensional bioprinted cancer models: a powerful platform for investigating tunneling nanotube-like cell structures in complex microenvironments. Mater. Sci. Eng. C 2021, 128, 112357. [CrossRef]
- Madelaine P. , 23 July 2023. https://www.3dnatives.com/en/3d-bioprinting-improve-cancer-treatment-240720234/, 3D Bioprinting Could Make Cancer Treatment More Effective (accessed on 22 Aug 2025).
- Augustine, R.; Kalva, S.N.; Ahmad, R. et al., 3D bioprinted cancer models. Revolutionizing personal cancer therapy. Transl. Oncol. 2021, 14, 101015. https://www.sciencedirect.com/science/article/pii/S1936523321000073?via%3Dihub(accessed on 27 May 2025).
- Urciuolo, A.; Poli, I.; Brandolino, L. et al., Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 2020, 4, 901–915. [CrossRef]
- Chen, Y.; Zhang, J.; Liu, X. et al., Noninvasive in vivo 3D Bioprinting. Scie. Adv. 2020, 6(23), eaba7406. https://www.science.org/doi/10.1126/sciadv.aba7406 (accessed on 27 May 2025). [CrossRef]
- Zhao, W.; Hu, C.; Xu, T. In vivo Bioprinting: Broadening the Therapeutic Horizon for Tissue Injuries. Bioact. Mater. 2023, 25, 201–222. [CrossRef]
- Liu, Z.; Xing, X.; Mo, H. et al., 3D printed dysphagia diet designed from Hypsizygus marmoreus by-products with various polysaccharides. J. Food Eng., 2023, 111395. https://www.sciencedirect.com/science/article/abs/pii/S0260877422004496 (accessed on 10 Aug. 2025).
- Eswaran, H.; Ponnuswamy, R.D.; Kannapan, R.P. et al., Perspective approaches of 3D printed stuffs for personalized nutrition: a comprehensive review. Ann. 3D Printed Med. 2023, 12, 100125. https://www.sciencedirect.com/science/article/pii/S2666964123000267 (accessed on 10 Aug. 2025).
- Płatek, P.; Daniel, N.; Cieplak, K. et al., 3D Printing in the Fight Against Covid-19. Med. Dev. (Auckl.) 2023, 16, 167-182, 2023. https://www.dovepress.com/3d-printing-in-the-fight-against-covid-19-peer-reviewed-fulltext-article-MDER (accessed on 10 May 2025). [CrossRef]
- Segaran, N.; Saini, G.; Mayer, J. L. et al., Application of 3D printing in preoperative planning. J. Clin. Med. 2021, 10(5), 917, 2021. https://pmc.ncbi.nlm.nih.gov/articles/PMC7956651/ (accessed on 27 May 2025). [CrossRef]
- Meyer-Szary, J.; Luis, M.S.; Mikulski, S. et al., The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. Int. J. Environ. Res. Public Health 2022, 19(6), 3331. https://pmc.ncbi.nlm.nih.gov/articles/PMC8953417/#sec2-ijerph-19-03331 (accessed on 21 Feb. 2025). [CrossRef]
- Portnoy, Y.; Koren, J.; Khoury, A. et al., Three-dimensional technologies in presurgical planning of bone surgeries: current evidence and future perspectives. Int. J. Surg. 2023, 109, 3-10. [CrossRef]
- Tsioukas, V.; Karolos, I.A.; Tsoulfas, G. et al., The long and winding road from CT and MRI images to 3D models. In 3D Printing: Applications in Medicine and Surgery, Tsoulfas, G.; Petros, P.I.; Suri, J.S., Eds.; Elsevier Amsterdam, The Netherlands, 2020, 7–20.
- Constantino, A. 5 July 2021, 3D printed models help doctors prepare for fetal surgeries. https://wtop.com/health-fitness/2021/07/3d-printed-models-help-doctors-prepare-for-fetal-surgeries/ (accessed on 11 July 2025).
- Müller, A.; Krishnan, K.G.; Uhl, E. et al., The application of rapid prototyping techniques in cranial reconstruction and preoperative planning. J. Craniofac. Surg. 2003, 14, 899–914. [CrossRef]
- Kalejs, M.; von Segesser, L.K. Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac. Surg. 2009, 8, 182–186, 2009. [CrossRef]
- Gupta, D.K.; Ali, M.H.; Ali, A. et al., 3D printing technology in healthcare: Applications, regulatory understanding, IP repository and clinical trial status. J. Drug Target. 2021, 30, 131–150, 2021. [CrossRef]
- Dzierżanowska, N.; Krakowiak, M.; Sokal, P. et al., The application of 3D printing in neurosurgery: present and future. Eur J Transl Clin Med. 2023, (1), 70-78, https://ejtcm.gumed.edu.pl/articles/158565 (accessed on 21 May 2025). [CrossRef]
- Duchi, S.; Onofrillo, C.; O’Connell, C.D. et al., Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair. Sci. Rep. 2017, 7, 5837, https://www.nature.com/articles/s41598-017-05699-x (accessed on 16 May 2025). [CrossRef]
- 11 Nov. 2024. https://www.southampton.ac.uk/engineering/news/2024/11/clinical-imagingbased-3d-printing-demonstrates-lifesaving-potential-in-complex-neurological-surgery.page (accessed on 20 May 2025).
- Lan, Q.; Zhu, Q.; Xu, L. et al., Application of 3D-Printed Craniocerebral Model in Simulated Surgery for Complex Intracranial Lesions. World Neurosurg. 2020, 134, e761-e770. [CrossRef]
- Flaxman, T.E.; Cooke, C.M.; Miguel, O.X. et al., A review and guide to creating patient specific 3D printed anatomical models from MRI for benign surgery. 3D Print. Med. 2021, 7, 17. [CrossRef]
- 30 Dec 2020. https://www.youtube.com/watch?app=desktop&v=RaeMsuZgSmg, Separating Conjoint Twins at UC Davies Health, (accessed on 30 Aug 2025).
- Rodriguez-De-Velasco, A.; Apaza, J.L.; Rojas, N. et al., Surgical planning and separation of ischiopagus conjoined twins using 3D printed models and intraoperative neurophysiological monitoring. J. Pediatric Surg. Case Rep. 2023, 92, 102604, . https://www.sciencedirect.com/science/article/pii/S2213576623000301 (accessed on 27 Aug 2025).
- 15 July 2017. https://www.gosh.com.kw/ar/node/3936/, Rare conjoint twins twins separated at Great Ormond Street Hospital (accessed on 10 Aug. 2025).
- Chandak, P.; Byrne, N.; Coleman, A. et al., Patient-specific 3D Printing: A Novel Technique for Complex Pediatric Renal Transplantation. Ann. Surg. 2019, 269, e18–e23. [CrossRef]
- Mussi, E.; Mussa, F.; Santarelli, C. et al., Current practice in preoperative virtual and physical simulation in neurosurgery. Bioeng. (Basel) 2020, 7(1) 7. [CrossRef]
- Hak, D.J.; Rose, J.; Stahel, P.F. Preoperative planning in orthopedic trauma: benefits and contemporary uses. Orthop. 2010, 33, 581–4. [CrossRef]
- Weinschenk, R.C.; Oldham, B.M.; Nagaraja, K.M. et al., Three-dimensional-printed femoral diaphysis for biomechanical testing – Optimization and validation. J. Orthop. Res. 2024, 42(12) 2735-2742. [CrossRef]
- Surgical Guide Solutions. https://www.piocreat3d.com/application-surgical-guide/?gad_source=1&gclid=EAIaIQobChMI3_ausob4iAMVYq1oCR0VAQ8uEAAYAiAAEgJKmvD_BwE (accessed on 5 Aug 2025).
- Duran, P. 30 June 2025, 3D Systems and Tissium receive FDA approval for first-of-its-kind peripheral nerve repair device. https://3dprintingindustry.com/news/3d-systems-and-tissium-receive-fda-approval-for-first-of-its-kind-peripheral-nerve-repair-device-241261/ (accessed on 9 July 2025).
- Pöppe, J.P.; Spendel, M.; Schwartz, C. et al., The “springform” technique in cranioplasty: custom made 3D-printed templates for intraoperative modelling of polymethylmethacrylate cranial implants. Acta Neurochir. 2022,, 164, 679–688, https://link.springer.com/article/10.1007/s00701-021-05077-7 (accessed on 27 May 2025). [CrossRef]
- Okolie, O.; Stachurek, I.; Kandasubramanian, B. et al., 3D printing for hip implant applications: a review. Polymers 2020, 12(11), 2682, https://www.mdpi.com/2073-4360/12/11/2682 (accessed on 23 Aug 2025). [CrossRef]
- All About 3D-Printed Splints. https://bitfab.io/blog/3d-printed-splints/ (accessed on 5 Aug 2025).
- Choo, Y.J.; Boudier-Reveret, M.; Chang, M.C. 3D printing technology applied to orthosis manufacturing: narrative review. Ann. Palliat. Med. 2020, 9(6). https://apm.amegroups.org/article/view/52460/html (accessed on 5 Aug 2025). [CrossRef]
- Wong, J.Y.; Pfahnl, A.C. 3D printing of surgical instruments for long-duration space missions. Aviat. Space Environ. Med. 2014, 85(7), 758-763(6). [CrossRef]
- Wei, W.; Li, Y.; Nassab, R. et al., 3D printed anchoring suture for permanent shaping tissues. Macromol. Biosci. 2017, 17(12), 10.1002/mabi.201700304. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932114/ (accessed on 27 May 2025). [CrossRef]
- Da Cunha, C.M.Q.; Campello, A.P.B.S.; Sales, L.B. et al., Development and mechanical-functional validation of 3D-printed laparoscopic forceps. Rev. Col. Bras. Cir. 2024, 24(51), e202436192024. https://pmc.ncbi.nlm.nih.gov/articles/PMC11185057/ (accessed on 3 Aug 2025). [CrossRef]
- Mamo, H.B.; Adamiak, M.; Kunwar, A. 3D printed biomedical devices and their applications: a review on state-of-the-art technologies, existing challenges, and future perspectives. J. Mech. Bev. Biomed. Mater. 2023, 143, 105930. https://www.sciencedirect.com/science/article/pii/S1751616123002837 (accessed on 15 Aug. 2025).
- Zhang, Y.; Rao, Z.; Zhang, J. et al., 3D printed guides and preoperative planning for uncemented stem anteversion reconstruction during hip arthroplasty: a pilot study. Biomed. Res. Int. 2021, 6621882. [CrossRef]
- Sun, M.L.; Zhang, Y.; Peng, Y. et al., Accuracy of a novel 3D-printed patient-specific intramedullary guide to control femoral component rotation in total knee arthroplasty. Orthop. Surg., 2020, 12, 429–441. [CrossRef]
- Bellocchio, A.M.; Ciancio, E.; Barbera, S. et al., Accuracy Assessment of 3D-Printed Surgical Guides for Palatal Miniscrew Placement: a Retrospective Study. Appl. Sci. 2025, 15(14), 7836. https://www.mdpi.com/2076-3417/15/14/7836?utm_campaign=releaseissue_applsciutm_medium=emailutm_source=releaseissueutm_term=titlelink30 (accessed on 25 July 2025). [CrossRef]
- Benady, A.; Gortzak, Y.; Sofer, S. et al., Internal hemipelvectomy for primary bone sarcomas using intraoperative patient specific instruments - the next step in limb salvage concept. BMC Musculosk. Dis. 2022, 23, 1012, https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-022-05918-1 (accessed on 27 May 2025). [CrossRef]
- De Vloo, R.; Pellikaan, P.; Dhollander, A. et al., Three-dimensional analysis of accuracy of component positioning in total knee arthroplasty with patient specific and conventional instruments: a randomized controlled trial. Knee 2017, 24, 1469–77. [CrossRef]
- Gouin, F.; Paul, L.; Odri, G.A. et al., Computer-assisted planning and patient-specific instruments for bone tumor resection within the pelvis: a series of 11 patients. Sarcoma 2014, 1–9. [CrossRef]
- https://www.marketsandmarkets.com/Market-Reports/3d-printing-medical-devices-market-90799911.html?gad_source=1&gclid=Cj0KCQjw2ou2BhCCARIsANAwM2ENWYCDPO8xbBt18xWhGcosUn9HhjY2aWrGM_FXUFX0q7ZgMAHW6gUaAuz4EALw_wcB (accessed on 17 Aug. 2025).
- Burnard, J.L.; Parr, W.C.H.; Choy, W.J. et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur. Spine J. 2020, 29, 1248–1260. [CrossRef]
- Sidambe, A.T. Biocompatibility of advanced manufactured titanium implants-a review. Materials (Basel) 2014, 7, 8168–8188, https://www.mdpi.com/1996-1944/7/12/8168 (accessed on 30 Aug 2025). [CrossRef]
- Budharadju, H.; Suresh, S.; Sekar, M.P. et al., Ceramic materials for 3D printing of biomimetic bone scaffolds – Current state-of-the-art & future perspectives. Mater. Design 2023, 231, 112064, https://www.sciencedirect.com/science/article/pii/S0264127523004793 (accessed on 27 June 2025). [CrossRef]
- Maintz, M.; Tourbier, C.; de Wild, M. et al., Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application. 3D Print. Med. 2024, 10, 13, https://threedmedprint.biomedcentral.com/articles/10.1186/s41205-024-00207-0 (accessed on 20 Aug 2025). [CrossRef]
- Chikarakara, E.; Fitzpatrick, P.; Moore, E. et al., In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti- 6Al-4V. Biomed. Mater. 2014, 10, 015007.
- Tanzer, M.; Chuang, P.J.; Ngo, C.G. et al., Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study. Bone Joint J. 101- B(6_Supple_B), 2019, 62-67. [CrossRef]
- Wu, Y.; Liu, J.; Kang, L. et al., An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023, 9(7), e17718, https://www.cell.com/heliyon/fulltext/S2405-8440(23)04926-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844023049265%3Fshowall%3Dtrue (accessed on 23 Aug 2025). [CrossRef]
- Park, J.Y.; Shim, J.H. Choi, S.A. et al., 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. J. Mater. Chem. B 2015, 3(27), 5415-5425. [CrossRef]
- Zhang, W.H.; Shi, W.; Wu, S.H. et al., 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabric. 2020, 12 (3), 035020. [CrossRef]
- Teng, F.Y.; Tai, I.C.; Ho, M.L. et al., Controlled release of BMP-2 from titanium with electrodeposition modification enhancing critical size bone formation. Mat. Sci. Eng. C-Mater. 2019, 105, 109879, https://www.sciencedirect.com/science/article/pii/S0928493118331734 (accessed on 27 May 2025). [CrossRef]
- Teixeira, B.N.; Aprile, P.; Mendonca, R.H. et al., Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J. Biomed. Mater. Res. B 2019, 107(1), 37-49. [CrossRef]
- Chen, L.; Shao, L.P.; Wang, F.P. et al., Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019, 9(19), 10494-10507. https://pubs.rsc.org/en/content/articlelanding/2019/ra/c8ra08788a (accessed on 27 May 2025).
- Ma, L.M.; Cheng, S.; Ji, X.F. et al., Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Mat. Sci. Eng. C-Mater. 2020, 117, 111303. https://www.sciencedirect.com/science/article/pii/S0928493120332215 (accessed on 27 May 2025).
- Zhang, T.; Zhou, W.; Jia, Z. et al. Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al4V for improved hemocompatibility, osteogenic and anti-infection potencies. Sci. China Mater. 2018, 61, 579–592. (accessed on 23 Aug. 2025). [CrossRef]
- Yu, L.J.; Wu, Y.H.; Liu, et al., J.Y. 3D culture of bone marrow-derived mesenchymal stem cells (BMSCs) could improve bone regeneration in 3D-printed porous Ti6Al4V scaffolds. Stem Cell Int. 2018, 2074021. [CrossRef]
- Zhang, W.; Sun, C.G.; Zhu, J.X. et al., 3D printed porous titanium cages filled with simvastatin hydrogel promotes bone ingrowth and spinal fusion in rhesus macaques. Biomater. Sci. 2020, 8(15), 4147-4156.
- Wu, W.G.; Ye, C.Y.; Zheng, Q.X. et al., A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology. J. Biomater. Appl. 2016, 31(2), 250-260. [CrossRef]
- Zhang, Y.L.; Zhai, D.; Xu, M.C. et al., 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J. Mater. Chem. B 2016, 4(17), 2874-2886. [CrossRef]
- Li, J.Y.; Li, L.L.; Zhou, J. et al., 3D printed dual-functional biomaterial with self-assembly micro-nano surface and enriched nano argentum for antibalctorial and bone regeneration. Appl. Mater. Today 2019, 17, 206-215. [CrossRef]
- nTop, 1 Feb. 2023. https://www.ntop.com/resources/blog/3d-printing-implants-a-complete-guide/ (accessed 4 Aug 2025).
- Paras, A. 28 Apr. 2023. https://instituteofdigitaldentistry.com/3d-printing/the-future-of-dentistry-how-3d-printing-is-changing-the-industry, The future of dentistry: how 3D printing is changing the industry (accessed on 25 Aug. 2025).
- Dawa, H.; No-Cortes, J.; Penarocha-Diago, M. et al., The Impact of Digital Imaging Tools and Artificial Intelligence on Self-Reported Outcome of Dentists. Appl. Sci. 2025, 15(14), 7943. https://www.mdpi.com/2076-3417/15/14/7943 (accessed on 25 Aug 2025). [CrossRef]
- Dias, J.M. da Silva, F.S.C.P. Gasik, M. et al., Unveiling additively manufactured cellular structures in hip implants: a comprehensive review. Int. J. Adv. Manuf. Technol. 2024, 130, 4073–4122, https://link.springer.com/article/10.1007/s00170-023-12769-0 (accessed on 25 Aug 2025). [CrossRef]
- Borthakur, P.P. The role and future directions of 3D printing in custom prosthetic design. Eng. Proc. 2024, 81(1), 10, https://www.mdpi.com/2673-4591/81/1/10 (accessed on 25 Aug 2025). [CrossRef]
- Shah, F.A.; Snis, A.; Matic, A. et al., A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. 2016, 30, 357–367. [CrossRef]
- McClements, D. 8 Aug. 2022, All about 3D printing prosthetics. https://www.xometry.com/resources/3d-printing/3d-printing-in-prosthetics/ (accessed on 26 Aug 2025).
- 18 Jan. 2023, 3D printing in prosthetics: A design guide. https://www.ntop.com/resources/blog/3d-printing-in-prosthetics-a-design-guide/ (accessed on 16 Aug. 2025).
- A custom fit? 3D printing for prosthetic limbs. https://www.medicaldevice-network.com/features/a-custom-fit-3d-printing-technology-turns-to-prosthetics/?cf-view (accessed on 16 Aug. 2025).
- Senkoylu, A.; Daldalh, I.; Cetinkaya, M. 3D printing and spine surgery. J. Orthop. Surg. 2020, 28(2), 2309499020927081. (accessed on 13 Aug 2025). [CrossRef]
- Wilcox, B.; Mobbs, R.J.; Wu, A.-M. et al., Systematic review of 3D printing in spinal surgery: the current state of play. J. Spine Surg. 2017, 3(3), 433-443. [CrossRef]
- 23 Oct. 2017. https://www.bbc.com/news/uk-wales-41721216, Morriston Hospital rebuilds cancerous jaws with 3D printing (accessed on 16 Aug. 2025).
- Kopacin, V.; Zubcić, V.; Mumlek, I. et al., Personalized 3D-printed cranial implants for complex cranioplasty using open-source software. Surg. Neurol. Int. 2024, 15, 39, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927182/ (accessed on 16 May 2025). [CrossRef]
- 25 Jul. 2019. https://sciencebusiness.net/network-updates/eth-zurich-and-strait-access-technologies-develop-customised-silicone-heart-valves (accessed on 16 May 2025).
- Chiodo, J. 28 Dec. 2021, KC-area man becomes first person in Kansas to receive 3D-printed pelvis, https://www.wibw.com/2021/12/28/kc-area-man-becomes-first-person-kansas-receive-3d-printed-pelvis/ (accessed on 26 Aug 2025).
- https://www.gesundheitsindustrie-bw.de/en/article/news/hope-patients-eye-diseases-human-cornea-3d-printers (accessed on 26 Aug 2025).
- Lorber, B.; Hsiao, W.-K.; Martin, K.R. Three-dimentional printing of the retina. Curr. Opin. Ophthalmol. 2016, 27(3), 262–267. https://pmc.ncbi.nlm.nih.gov/articles/PMC4888916/ (accessed on 26 Aug. 2025). [CrossRef]
- Teha, K.S.R.V.; Sreejith, M.; Sivapirakasam, S.P. Advancements in Hip Implant Materials: A Comprehensive Review on the Development of Hip Implants to Achieve Enhanced Performance and Durability. In: Recent Advances in Mechanical Engineering, Vol. 1. Raghavendra, G.; Deepak, B.B.V.L.; Gupta, M., Eds.; ICMech-REC 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2024, 637 – 649. [CrossRef]
- Thompson, H. 30 July 2015, Lego prototype system brings a bit fun to prosthetics. https://www.smithsonianmag.com/smart-news/kids-can-build-their-own-lego-prosthetics-180956098/ (accessed on 26 Aug. 2025).
- O’Neal, B. 4 Nov. 2015, Northeastern University: Researchers Invent 3D Magnetic Printing, Make Neonatal Catheters. https://3dprint.com/103885/nu-3d-neonatal-catheters/ (accessed on 6 Aug 2025).
- Aydin, A.; Demirtas, Z.; Ok, M. et al., 3D printing in the battle against COVID-19. Emergent Mater. 2021, 4, 363–386. (accessed on 17 Aug. 2024). [CrossRef]
- Tino, R.; Moore, R.; Antoline, S. et al.. COVID-19 and the role of 3D printing in medicine. 3D Print. Med. 2020, 6, 11, https://threedmedprint.biomedcentral.com/articles/10.1186/s41205-020-00064-7 (accessed on 27 May 2025). [CrossRef]
- Boelen, E. 12 Mar. 2023, 3D printing at Point-of-Care with quality. https://3dheals.com/3d-printing-at-point-of-care-with-quality (accessed on 9 Aug 2025).
- Saunders, S. 1 Apr. 2021, LimaCorporate and HSS open first hospital-based facility for 3D printed implants. https://3dprint.com/280275/limacorporate-and-hss-open-first-provider-based-facility-for-3d-printed-implants/ (accessed on 17 May 2025).
- Bastawrous, S.; Wu, L.; Liacouras, P.C. et al., Establishing 3D printing at the Point of Care: basic principles and tools for success. RadioGraphics 2022, 42(2), 451-468, 2022. https://pubs.rsna.org/doi/full/10.1148/rg.210113 (accessed on 2 July 2025). [CrossRef]
- Sheikh, A.; Chepelev, L.; Christensen, A.M. et al., Beginning and Developing a Radiology-Based In-Hospital 3D Printing Lab. In 3D printing in medicine: a practical guide for medical professionals, Rybicki, F.J.; Grant, G.T., Eds., Cham, Switzerland, Springer, 2017, 35–41.
- RICOH 3D for Healthcare. https://www.ricoh-usa.com/en/industries/healthcare/3d-printing-for-healthcare (accessed on 26 Aug 2025).
- Madeleine, P. 2 Sept. 2024, Vital3D talks shaping the future of medicine with organ bioprinting. https://www.3dnatives.com/en/vital3d-shaping-medicine-organ-bioprinting-020920244/ (accessed on 26 Aug 2025).
- The Waiting List. https://www.donors1.org/patients/resources-for-transplant-patients/the-waiting-list/ (accessed on 26 Aug 2025).
- WennersHerron, A. 1 March 2024, 3D-printed skin closes wounds and contains hair follicle precursors, https://www.psu.edu/news/research/story/3d-printed-skin-closes-wounds-and-contains-hair-follicle-precursors (accessed on 26 Aug 2025).
- Lloreda, C.L. 9 Feb. 2024, 3D printed creates brain tissue that acts like the real thing. https://www.science.org/content/article/3d-printer-creates-brain-tissue-acts-real-thing (accessed on 26 Aug 2025).
- Samanipour, R.; Tahmooressi, H.; Nejad, H.R. et al., A review on 3 printing functional brain model. Biomicrofl. 2022, 16, 011501, https://pmc.ncbi.nlm.nih.gov/articles/PMC8816519/ (accessed on 26 Aug 2025). [CrossRef]
- Zhou, J.; Li, Q.; Tian, Z. et al., Recent advances in 3D bioprinted cartilage-mimicking constructs. Mater. Today Bio. 2023, 23, 100870, https://www.sciencedirect.com/science/article/pii/S2590006423003307?via%3Dihub (accessed on 26 Aug 2025). [CrossRef]
- Bhandari, S.; Yadav, V.; Ishaq, A. et al., Trends and challenges in the development of 3D-printed heart valves and other cardiac implants: a review of current advances. Cureus 2023, 15(8), e43204. [CrossRef]
- Yadid, M.; Oved, H.; Silberman, E. et al. Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat. Rev. Cardiol. 2022, 19, 83–99. [CrossRef]
- Organovo, 5 Oct. 2016, Organovo introduces 3D bioprinted human liver as leading therapeutic tissue in preclinical development. https://ir.organovo.com/news-releases/news-release-details/organovo-introduces-3d-bioprinted-human-liver-leading/ (accessed on 21 Aug 2025).
- Chung, J.J.; Im, H.; Kim, S.H. et al., Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 4(8), 586406. https://pmc.ncbi.nlm.nih.gov/articles/PMC7671964/ (accessed on 26 Aug 2025). [CrossRef]
- Jeon, O.; Lee, B.Y.; Jeong, H. et al., Individual cell-only bioink photocurable supporting medium for 3D printing generation of engineered tissues with complex geometries. Mater. Horiz. 2019, 6, 1625-1631. [CrossRef]
- Shen, M.; Wang, L.; Gao, Y. et al., 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater. Today Bio. 2022, 16, 100382, https://www.sciencedirect.com/science/article/pii/S2590006422001806 (accessed on 26 Aug 2025).
- Lachlan, G. 25 Jan. 2021, Scientists use novel ink to 3D-print “bone” with living cells. https://www.unsw.edu.au/newsroom/news/2021/01/scientists-use-novel-ink-to-3d-print--bone--with-living-cells (accessed on 26 Aug 2025).
- Yu, Y.S.; Ahn, C.B.; Son, K.H. et al., Motility improvement of Biomimetic trachea scaffold via hybrid 3D bioprinting technology. Polymers 2021, 13(6), 971. https://www.mdpi.com/2073-4360/13/6/971 (accessed on 26 Aug 2025). [CrossRef]
- Wengerten, B.C.; Emre, G.; Park, J.Y. et al., Three-dimensional printing in the intestine. Clin. Gastroenterol. Hepatol. 2016, 14(8), 1081-5. [CrossRef]
- Zhang, L.; Yang, G.; Johnson, B.N. et al., Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia 2019, 84, 16-33. [CrossRef]
- Brownell, L. 7 Aug. 2024, New printing method creates branching vessels in heart tissue that replicate the structure of human vasculature in vitro. https://wyss.harvard.edu/news/3d-printed-blood-vessels-bring-artificial-organs-closer-to-reality/ (accessed on 26 Aug 2025).
- von Kampen, K.A.; Olaret, E.; Stancu, I.-C. et al., Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties. Mat. Sci. Eng. C 2021, 119, 111472. (accessed on 26 Aug. 2025). [CrossRef]
- Itoh, M.; Nakayama, K.; Noguchi, R. et al., Correction: Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae. PLOS ONE 2015, 10(12), e0145971, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136681 (accessed on 26 Aug. 2025). [CrossRef]
- Zelinski, P. 4 Oct 2024. https://www.additivemanufacturing.media/articles/ultra-complex-3d-printed-scaffolds-enable-cell-growth-the-cool-parts-show-70 (accessed on 26 Aug 2025).
- Assulin, M.; Michael, I.; Shapira, A. et al., One-step 3D printing of heart patches with built-in electronics for performance regulation. Adv. Sci. 2021, 8, 2004205, https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202004205 (accessed on 26 Aug 2025). [CrossRef]
- Rosellini, E.; Cascone, M.G.; Guidi, L. et al., Mending a broken heart by biomimetic 3D printed natural biomaterial-based cardiac patches: a review. Front. Bioeng. Biotechnol. 2023, (11) 1254739, https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1254739/full (accessed on 26 Aug 2025). [CrossRef]
- 3D Printed Oncology Prosthetic Market, Aug 2025. https://www.verifiedmarketreports.com/download-sample/?rid=893210&utm_source=Pulse-April-Glob&utm_medium=361 (accessed on 26 Aug 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).