Submitted:
05 September 2025
Posted:
10 September 2025
You are already at the latest version
Abstract
Introduction: Vaccine is the most widely used public health measure to control the global COVID-19 pandemic. Most of the vaccines used in Europe and North America are mRNA-based vaccine A mass vaccination campaign was carried out between 2021 and 2024. Some adverse events have been reported. We question the role of vaccines in the pathogenesis of rheumatological manifestations observed following one or more injections. Material and methods: A prospective observational study involving two cohorts was initiated, with the first cohort observed from 13th September 2021 to 30th September 2022, and the second cohort from 1st October 2022 to 30th September 2023. The study also focused on the interval between the last vaccine injection and the onset of rheumatic symptoms. None of the patients had a history of rheumatic or inflammatory diseases. We compare both cohorts and ankle arthritis case series to analyze the differences between early and late onset adverse events patients. Results: In both cohorts and case series, the majority of patients are women. The most common symptoms include diffuse muscle pain, which mimics polymyalgia rheumatica and ankle arthritis. Very high levels of anti-Spike antibodies (> 2080 BAU/ml) were generally detected. Pearson correlation coefficient between both cohorts and case series is very high, confirming the reproducibility of post-vaccine clinical and biological features. Conclusion: These rheumatological manifestations might be triggered by inappropriate individual immune responses to the vaccine's Spike protein and/or the overproduction of Spike protein, which can mediate a pro-inflammatory reaction explaining early and late-onset effects.
Keywords:
Introduction
Material and Methods
Cohort 1
Cohort 2
Discussion
Bradford Hill Criteria
Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Unal Enginar, A. Arthritis following Covid-19 vaccination: report of two cases. Int Immunopharmacol 2021, 101, 108256. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Chen, C.-J. new onset inflammatory arthritis after Covid-19vaccination: A systematic review. Int J Rheum Dis. 2022, 00, 1–11. [Google Scholar]
- Solis, 0.; Beccari, A.R.; Iaconis, D.; Talarico, C.; Ruiz-Bedoya, C.A.; Nwachukwu, J.C.; et al. The SARS-CoV-2 spike protein binds and modulates estrogen receptors. Sci. Adv 4150, 8. [Google Scholar] [CrossRef] [PubMed]
- Izuka, S.; Komai, T.; Natsumoto, B.; Shoda, H.; Fujio, K. Self-limited Polymyalgia Rheumatica-like Syndrome Following mRNA-1273 SARS-CoV-2 Vaccination. Intern. Med. 2022, 61, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Pierre-André Jarrot, Adrien Mirouse, Sébastien Ottaviani et al ; Polymyalgia rheumatica and giant cell arteritis following COVID-19 vaccination: Results from a nationwide survey; human vaccines & immunotherapeutics 2024, vol. 20, no. 1, 2334084 https: //doi.org/10.1080/2164551.2024.2334084.
- Golstein, M.A.; Fagnart, O.; Steinfeld, S.D. Reactive arthritis after COVID-19 vaccination: 17 cases. Rheumatology 2023, 62, 3706–3709. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, H.; Hudson, A.P. Reactive Arthritis Update: Spotlight on New and Rare Infectious Agents Implicated as Pathogens. Curr Rheumatol Rep 2021, 23, 53. [Google Scholar] [CrossRef] [PubMed]
- bhishek, A.; de Pablo, P.; Cader, M.Z.; Buckley, C.D.; Raza, K.; Filer, A. Diagnostic outcomes associated with ankle synovitis in early inflammatory arthritis: a cohort study. Clin Exp Rheumatol 2014, 32, 533538. [Google Scholar]
- Li, X.; Tong, X.; Yeung, W.W.Y.; Kuan, P.; Yum, S.H.H.; Chui, C.S.L.; Lai, F.T.T.; Wan, E.Y.F.; Wong, C.K.H.; Chan, E.W.Y.; et al. Two-dose COVID-19 vaccination and possible arthritis flare among patients with rheumatoid arthritis in Hong Kong. Ann. Rheum. Dis. 2022, 81, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Honda, H.; Tanaka, T.; Uraguchi, K.; Kawahara, M.; Hagiya, H. COVID-19 mRNA Vaccine–Associated Uveitis Leading to Diagnosis of Sarcoidosis: Case Report and Review of Literature. J. Investig. Med. High Impact Case Rep. 2022, 10. [Google Scholar] [CrossRef]
- Tokumasu, K.; Fujita-Yamashita, M.; Sunada, N.; Sakurada, Y.; Yamamoto, K.; Nakano, Y.; Matsuda, Y.; Otsuka, Y.; Hasegawa, T.; Hagiya, H.; et al. Characteristics of Persistent Symptoms Manifested after SARS-CoV-2 Vaccination: An Observational Retrospective Study in a Specialized Clinic for Vaccination-Related Adverse Events. Vaccines 2023, 11, 1661. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New-onset autoimmune phenomena post COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Yonker, L.M.; Swank, Z.; Bartsch, Y.C.; Burns, M.D.; Kane, A.; Boribong, B.P.; Davis, J.P.; Loiselle, M.; Novak, T.; Senussi, Y.; et al. Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine Myocarditis. Circulation 2023, 147, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Najjar-Debbiny, R.; Hanna, A.; Jabbour, A.; Abu Ahmad, Y.; Saffuri, A.; Abu-Sinni, M.; Shkeiri, R.; Elemy, A.; Hakim, F. COVID-19 vaccine – Long term immune decline and breakthrough infections. Vaccine 2021, 39, 6984–6989. [Google Scholar] [CrossRef] [PubMed]
- ousa Silva MF, Matias Dinelly Pinto AC, de Cassia Evangelista de Oliveira F, Freire Caetano L, Montenegro de Carvalho Araujo F, Gambim Fonseca MH. Antibody response 6 months after booster dose of Pfizer in previous recipients of CoronaVac, J Med Virol.2022:1-6. [CrossRef]
- Cosentino, M.; Marino, F. Understanding the Pharmacology of COVID-19 mRNA Vaccines: Playing Dice with the Spike? Int. J. Mol. Sci. 2022, 23, 10881. [Google Scholar] [CrossRef] [PubMed]
- hang L, Richards A, Immaculada Barrasa M, Hughes SH, Young RA, Jaenisch R. Reverse-transcriptase SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues PNAS vol. 118 n° 21. [CrossRef]
- Aldén, M.; Olofsson Falla, F.; Yang, D.; Barghouth, M.; Luan, C.; Rasmussen, M.; De Marinis, Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.D.; Rudemiller, N.P. Immunologic Effects of the Renin-Angiotensin System. J. Am. Soc. Nephrol. 2017, 28, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Aboudounya, M.M.; Heads, R.J.; Dozio, E. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediat. Inflamm. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
| Patients | Age | gender | Ethnic | Vaccines | Vaccine doses / delay days 1st/delay 2d/delay 3d/delay 4th/delay |
||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| F | M | F | M | Caucasian | Black African | Asian | mRNA | DNA | |||
| Cohort1 | 124 | 54,6 | 59,6 | 87 | 37 | 79F/32M | 7F/3M | 1F/1M | 120 | 4 | 17/12,5d 50/20,3d 55/30,5d 4/30,5d |
| Cohort2 | 125 | 41,2 | 50,6 | 94 | 31 | 86F/29M | 7F/0M | 1F/2M | 123 | 2 | 4/12,5d 45/>122d 58/>113d 18/>126d |
| Polymyalgia | Ankle arthritis | Fingers hands wrist | Knees arthritis | Hips arthritis | Ploy - oligo arthritis | Combination | diverse | |
|---|---|---|---|---|---|---|---|---|
| Cohort1 | 73 | 38+1 | 13 | 9+1 | 2 | 1 | 19 | 0 |
| Cohort2 | 53 | 37 | 33 | 15+9 | 3 | 1 | 24 | 2 |
| Anti-Spike BAU/ml | High SR mm/h Patient/ mean value |
High CRP mg/l Patient/ mean value |
ANA | RF | Anti CCP | ||||
|---|---|---|---|---|---|---|---|---|---|
| >2080 | 1000 -2080 | ||||||||
| Cohort 1 | 104 | 20/ 1318 | 32F/41mm/h | 8M/46,mm/h | 32F/14,6mg/l | 8M/26,3 mg/l | 3 | 0 | 2 |
| Cohort 2 | 96 | 29/1434 | 35F/19mm/h | 9M/15,7mm/h | 35F/7,04mg/l | 9M/12,2 mg/l | 8 | 1 | 3 |
| Patients | VS/CRP | Number Vaccine doses | Anti Spike anti bodies BAU/ml |
||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Age | gender | VS mm/h |
CRP mg/l |
Johnson | Astra Zeneca | Moderna | Pfizer | >2080 | 1000-2080 | <1000 | |
| 59 Control | 56 | 43F/16M | 2 | 32 | 23 | 72 | 0 | 0 | 59 | ||
| 17 Early | 51,8 | 13F /4M | 27,7 (3-85) | 23,7(2-69) | 0 | 2 | 3 | 20 | 13 | 1 |
2 |
| 17 Late | 57,1 | 14F /3M | 26,6 (2-73) | 9 (2-52) | 0 | 8 | 4 | 35 | 10 | 5 | 2 |
| Case | Sex/Age | Ethnic | vaccine | Clinical features | ESR (mm/h)/ CRP (mg/l) | SarsCov2 S IGG AB (delay) |
|---|---|---|---|---|---|---|
| 1 | F/48 | Caucasian | Pfizer x2 | Ankle R+L | 73/4 | >2080(17months) |
| 2 | F/75 | Caucasian | Pfizer x3 | Ankle R +L | 48/9 | >2080(19months) |
| 3 | M/60 | Caucasian | Pfizer x3 | Ankle R +L | 7/2 | 1300 (22months) |
| 4 | F/52 | Caucasian | Pfizer x3 | Ankle R+L | 22/4 | >2080(13months) |
| 5 | F/53 | Caucasian | Pfizer x3 | Ankle R+L | 15/2 | 425(15months) |
| 6 | M/50 | Caucasian | Pfizer x3 | Ankle R +L | 26/21 | >2080(13months) |
| 7 | F/80 | Caucasian | Moderna x3 | Ankle R+L | 30/04 | >2080(16months) |
| 8 | F/74 | Caucasian | Pfizer x3 | Ankle R +L | 11/52 | >2080(15months) |
| 9 | F/54 | Caucasian | AZ x2 | Ankle R +L | 39/15 | 1280(22months) |
| 10 | F/68 | Caucasian | AZ x2 Pfizerx1 | Ankle R +L Knee R |
21/02 | 1680(17months) |
| 11 | F/55 | Caucasian | Pfizer x2 | Ankle R +L | 39/4 | >2080(25months) |
| 12 | M/69 | Caucasian | AZx2 Pfizerx2 | Ankle R +L | 6/2 | 641(8months) |
| 13 | F/39 | Asian | Pfizerx2Modernax1 | Ankle R +L | 30/06 | >2080(17months) |
| 14 | F/48 | African | Pfizer x2 | Ankle R +L | 56/8 | 1530(20months) |
| 15 | F/38 | African | Pfizer x3 | Ankle R +L | 19/10 | 1550(11months) |
| 16 | F/49 | African | AZx2Pfizerx1 | Ankle R +L | 2/6 | >2080(19months) |
| 17 | F/57 | Caucasian | Pfizerx2Modernax1 | Ankle R +L. Knee R+L |
9/3 | >2080(21months) |
| age | gender | ethnic | biology | Anti spike BAU/ml | clinical | vacce | delay | ||
|---|---|---|---|---|---|---|---|---|---|
| SR mm/h |
CRP mg/l |
||||||||
| 1 | 27 | F | Black African | 27 | 16 | >2080 | Ankle L+R | Modernax2 | 7days |
| 2 | 66 | F | Black African | 44 | 17 | 1780 | Ankle L+R | AZx2 | 5 days |
| 3 | 38 | F | Black African | 6 | 4 | >2080 | Ankle L+R | Pfizerx2 | 7 days |
| 4 | 33 | F | Maghreban | 50 | 24 | >2080 | Ankle L+R and mediastinal lymphadenopathy | Pfizerx2 | 3months |
| 5 | 43 | M | Black African | 32 | 24 | 1250 | Ankle L+R | Modernax2 | >6months |
| 6 | 48 | F | Black African | 20 | 2 | >2080 | Ankle L+R | PfizerX2 | ? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
