Submitted:
01 September 2025
Posted:
05 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
Section 2.
2.1. Global and Regional Perspectives on IoT Resilience to Climate Risks
2.2. Climate Change and IoT Vulnerability: Global Trends and Specific Risks in Kazakhstan
2.3. Climate-Related Specialties of Kazakhstan
2.4. Strategies for IoT Resilience to Harsh and Variable Environmental Conditions
2.5. Risk Modelling and Predictive Reliability Analysis of IoT Devices in Extreme Climatic Conditions
3. Methodology
3.1. Climate Data Collection
3.2. IoT Device Selection and Priorities
3.3. IoT Device Operating Conditions
3.4. Climate Risk Modelling
3.5. Data Processing and Visualization
Section 4.
Analysis and Results
5. Conclusion
Funding
References
- Algarni, S.; Nutter, D. Influence of Dust Accumulation on Building Roof Thermal Performance and Radiant Heat Gain in Hot-Dry Climates. Energy and Buildings 2015, 104, 181–190. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Computer Networks 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Computer Networks 2010, 2787–2805. [Google Scholar] [CrossRef]
- Copernicus Climate & Service, C. 2021. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate.
- Cote, J.-N.; Germain, M.; Levac, E.; Lavigne, E. Vulnerability assessment of heat waves within a risk framework using artificial intelligence. Science of The Total Environment 2024, 912, 169355. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Ferrández, A.; Mora-Mora, H.; Peral, J. Internet of Things: A Review of Surveys Based on Context Aware Intelligent Services. Sensors 2016, 16, 1069. [Google Scholar] [CrossRef]
- Gonçalves, A.C.R.; Costoya, X.; Nieto, R.; Liberato, M.L.R. Extreme weather events on energy systems: a comprehensive review on impacts, mitigation, and adaptation measures. Sustainable Energy Research 2024, 11, 4. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- IPCC 2021. IPCC Sixth Assessment Report.
- KAZHYDROMET 2023. national hydrometeorological service of the Republic of Kazakhstan.
- KAZHYDROMET.KZ 2023. The national hydrometeorological service of the Republic of Kazakhstan.
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA Journal of Automatica Sinica 2021, 8, 718. [Google Scholar] [CrossRef]
- Pandiyan, P.; Saravanan, S.; Kannadasan, R.; Krishnaveni, S.; Alsharif, M.H.; Kim, M.-K. A comprehensive review of advancements in green IoT for smart grids: Paving the path to sustainability. Energy Reports 2024, 11, 5504–5531. [Google Scholar] [CrossRef]
- Parsons, E.; Panaousis, E.; Loukas, G.; Sakellari, G. A Survey on Cyber Risk Management for the Internet of Things. Applied Sciences 2023, 13, 9032. [Google Scholar] [CrossRef]
- Penalva, M.; Ruiz, C.; Martínez, V.; Veiga, F.; Veiga, F.; Ballesteros, T. Application-Oriented Data Analytics in Large-Scale Metal Sheet Bending. Applied Sciences 2023, 131, 87. [Google Scholar] [CrossRef]
- Pwavodi, J.; Ibrahim, A.U.; Pwavodi, P.C.; Al-Turjman, F.; Mohand-Said, A. The role of artificial intelligence and IoT in prediction of earthquakes: Review. Artificial Intelligence in Geosciences 2024, 5, 100075. [Google Scholar] [CrossRef]
- Rahmani, H.; Shetty, D.; Wagih, M.; Ghasempour, Y.; Palazzi, V.; Carvalho, N.B.; Correia, R.; Costanzo, A.; Vital, D.; Alimenti, F.; Kettle, J.; Masotti, D.; Mezzanotte, P.; Roselli, L.; GROSINGER, J. Next-Generation IoT Devices: Sustainable Eco-Friendly Manufacturing, Energy Harvesting, and Wireless Connectivity. IEEE Journal of Microwaves 2023, 3, 237–255. [Google Scholar] [CrossRef]
- Rastegari, H.; Nadi, F.; Lam, S.S.; Ikhwanuddin, M.; Kasan, N.A.; Rahmat, R.F.; Mahari, W.A.W. Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agricultural Technology 2023, 4, 100187. [Google Scholar] [CrossRef]
- Raza, S.; Faheem, M.; Günes, M. Industrial wireless sensor and actuator networks in industry 4. 0: Exploring requirements, protocols, and challenges-A MAC survey. International Journal of Communication Systems 2019, 32, e4074. [Google Scholar]
- Riaz, K.; Mcafee, M.; Gharbia, S.S. Management of Climate Resilience: Exploring the Potential of Digital Twin Technology, 3D City Modelling, and Early Warning Systems. Sensors 2023, 23, 2659. [Google Scholar] [CrossRef] [PubMed]
- Salam, A. 2020. Internet of Things for Environmental Sustainability and Climate Change.
- Salnikov, V.; Talanov, Y.; Polyakova, S.; Assylbekova, A.; Kauazov, A.; Bultekov, N.; Musralinova, G.; Kissebayev, D.; Beldeubayev, Y. An Assessment of the Present Trends in Temperature and Precipitation Extremes in Kazakhstan. Climate 2023, 11, 33. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef] [PubMed]
- World Bank, G.A.T.A.D.B. 2021. Climate Risk Country Profile: Kazakhstan.
- Xenarios, S.; Smakhtin, V.; Sehring, J.; Schmidt-Vogt, D.; Tsani, S.; Hannah, C.; Michalena, E. 2018. Water-Energy-Food Nexus and Environment in Central Asia.
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Transactions on Industrial Informatics 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Yilmaz, M. Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment 2023, 856, 159182. [Google Scholar] [CrossRef] [PubMed]







| Climate Variable | Range (1950-2100) | Source |
|---|---|---|
| Temperature (Kazakhstan) | 1.5°C to 4.0°C increase | CMIP6 RCP4.5 & RCP8.5 (IPCC, 2021) |
| Winter Temperature | Increased frequency of extreme cold events (below -40°C) | CMIP6 RCP4.5 & RCP8.5 (IPCC, 2021) |
| Summer Temperature | Increased frequency of heatwaves (above 40°C) | CMIP6 RCP8.5 (IPCC, 2021) |
| Precipitation | -10% to +20% change | CMIP6 SSP5 Scenario |
| Extreme Heat Events | Increased frequency of heatwaves | CMIP6 RCP8.5 (IPCC, 2021) |
| Extreme Cold Events | Increased frequency of cold extremes | CMIP6 RCP4.5 & RCP8.5 (IPCC, 2021) |
| IoT Device Type | Operating Temperature Range | Operating Humidity Range | Power Requirements | Snow/Ice Resistance | Wind Resistance | Common Applications |
|---|---|---|---|---|---|---|
| Cameras (Outdoor) | -30°C to 50°C | 10% to 100% | Medium (5V, 12V DC) | Moderate (icing risk) | Up to 20 m/s | Security, environmental monitoring |
| Sensors (Temperature, Humidity) | -40°C to 55°C | 0% to 100% | Low (battery powered or low voltage) | Low-moderate (indoor/outdoor) | Low | Smart homes, agriculture, weather monitoring |
| Actuators (Valve Controllers) | -30°C to 60°C | 0% to 100% | Medium (12V DC) | Moderate | Moderate | Industrial systems, irrigation |
| Routers (IoT Gateways) | -30°C to 50°C | 5% to 95% | High (AC/DC, 12V) | Low | Moderate | Smart homes, IoT infrastructure |
| POS Terminals (Outdoor) | -30°C to +50°C | 10% to 100% | Medium (AC/DC, 12V) | Moderate (weatherproof, dustproof) | Low | Retail, payment systems, outdoor kiosks, mobile sales |
| SIM Cards (for IoT) | -40°C to +55°C | 0% to 100% | Low (powered by device) | N/A | N/A | Mobile devices, data communication, IoT connectivity |
| e-SIM | -40°C to +85°C | 0% to 100% | Low | N/A | N/A | Next-gen IoT connectivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
