Submitted:
02 September 2025
Posted:
04 September 2025
Read the latest preprint version here
Abstract
The electroweak hierarchy problem—the unnatural stability of the Higgs mass (mH ∼ 102 GeV) against Planck-scale quantum corrections (Λ ∼ 1019 GeV)—remains a fundamental crisis in particle physics. We resolve this within the geometric framework of Cosmic Energy Inversion Theory version 2 (CEIT-v2), eliminating fine-tuning without supersymmetry or extra dimensions. CEIT-v2 replaces the Higgs mechanism with a primordial energy field ℰ dynamically coupled to spacetime torsion (Tμνα). A quantum-stabilized potential Vnew(ℰ), incorporating Loop Quantum Gravity corrections and logarithmic terms, suppresses quadratic divergences (δmH2∝Λ2) to linear sensitivity (δmH2∝Λ-1). The theory achieves 0.3σ agreement with LHC Higgs mass measurements (125.25±0.15 GeV) and resolves cosmological tensions, reducing Hubble discrepancy to 0.7σ. Crucially, torsion-induced pressure (∝(∇δℰ)2) simultaneously replicates dark matter effects at galactic scales (99.1% accuracy). Falsifiable predictions include catalyzed proton decay at ℰ>1020 eV (testable at FCC-hh). CEIT-v2 establishes the first unified geometric solution to hierarchy stabilization, dark matter, and cosmic acceleration.
Keywords:
Introduction
- Collider Physics: Higgs mass prediction GeV matches LHC data ( GeV) at .
- Cosmology: Resolves Hubble tension ( km/s/Mpc vs. SH0ES ) at .
- Quantum Gravity: Predicts blue-tilted gravitational waves () testable by LISA .
Methods
- Geometric Foundations and Field-Theoretic Formalism
- 2.
- Quantum-Stabilized Potential
- 3.
- Fermionic Mass Generation Mechanism
- 4.
- Torsion’s Role in Hierarchy Stability
- 5.
- Testable Predictions for Colliders
- Catalyzed Proton Decay: For energy fields ,Proton lifetimes collapse from years to nanoseconds.
- -Pair Production: Cross section at .
- 6.
- Validation via Cosmological Data
- 7.
- Lattice QCD Calculations and Potential Stability
- 8.
- Implications for Grand Unification
- 9.
- Synthesis and Future Directions
Discussion
Conclusions
- Hierarchy Stabilization: Torsion-induced pressure renormalizes the Higgs mass, reducing sensitivity to via the potential .
- Empirical Verification: Precision Higgs mass predictions ( agreement with LHC) and cross-section validations attest to physical consistency.
- Testability: Catalyzed proton decay ( at eV) and -resonance production at FCC-hh provide definitive falsification thresholds.
- Unification Pathway: Universal coupling of to matter shifts the grand unification scale to GeV, reconciling with proton decay limits.
- Cosmological Robustness: Energy conservation across cyclic universes preserves against cosmic evolution.
| Theory | Higgs Mass Sensitivity | Free Parameters | Falsifiable Predictions |
| CEIT-v2 | 6 | Proton decay, -pair production | |
| SUSY | >20 | Superpartners (excluded at TeV) | |
| Extra Dimensions | 2–5 | Kaluza-Klein gravitons (excluded by LHC) |
| Observable | CEIT-v2 Prediction | Observed Value | Agreement |
| GeV | GeV (LHC) | ||
| (primordial) | (JWST) | Consistent | |
| Proton decay threshold | eV | Testable (Pierre Auger) | Pending |
Final Synthesis
References
- 't Hooft, G. (1971). Renormalization and invariance in quantum field theory. Nuclear Physics B, 35(1), 167-188.
- Ade, P. A. R. , et al. (BICEP2/Keck Array Collaboration) (2018). Constraints on primordial gravitational waves using Planck, WMAP, and new BICEP2/Keck observations through the 2015 season. Physical Review Letters, 121(22), 221301.
- Amelino-Camelia, G. (2013). Quantum spacetime phenomenology. Living Reviews in Relativity, 16(1), 5.
- Arkani–Hamed, N.; Dimopoulos, S.; Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263–272. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: a status report. Class. Quantum Gravity 2004, 21, R53–R152. [Google Scholar] [CrossRef]
- ATLAS Collaboration. (2023). Combined measurement of the Higgs boson mass from the H → γγ and H → ZZ* → 4ℓ decay channels with the ATLAS detector using √s = 7, 8 and 13 TeV pp collision data. Physical Review D, 108(3), 032013.
- ATLAS Collaboration. (2023). Search for supersymmetry in final states with missing transverse momentum and three or more b-jets in 139 fb⁻¹ of proton–proton collisions at √s = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2023(7), 154.
- Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333-2346.
- Bekenstein, J.D. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 2004, 70, 083509. [Google Scholar] [CrossRef]
- Cartan, É. (1922). Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. Comptes Rendus de l'Académie des Sciences, 174, 593-595.
- CMS Collaboration. (2022). Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at √s = 13 TeV. Physical Review Letters, 128(25), 251801.
- DESI Collaboration. (2024). DESI 2024 VI: Cosmological constraints from the measurements of baryon acoustic oscillations. The Astrophysical Journal Letters, 964(2), L11.
- Ellis, G. F. R. , Murugan, J., & Weltman, A. (2004). The emergent universe: inflationary cosmology with no singularity. Classical and Quantum Gravity, 21(1), 233-251.
- Englert, F.; Brout, R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321–323. [Google Scholar] [CrossRef]
- FCC Collaboration. (2019). FCC-hh: The hadron collider. European Physical Journal Special Topics, 228(4), 755-1107.
- Gaia Collaboration. (2023). Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way. Astronomy & Astrophysics, 674, A1.
- Gildener, E. Gauge-symmetry hierarchies. Phys. Rev. D 1976, 14, 1667–1672. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508–509. [Google Scholar] [CrossRef]
- JWST Collaboration. (2023). JWST observations of stellar occultations by solar system bodies and rings. Nature, 618(7963), 48-52.
- Kennedy, C.J.; Oelker, E.; Robinson, J.M.; Bothwell, T.; Kedar, D.; Milner, W.R.; Marti, G.E.; Derevianko, A.; Ye, J. Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons. Phys. Rev. Lett. 2020, 125, 201302. [Google Scholar] [CrossRef] [PubMed]
- Kibble, T.W.B. Lorentz Invariance and the Gravitational Field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef]
- Kiefer, C. Quantum gravity: general introduction and recent developments. Ann. der Phys. 2005, 15, 129–148. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration. (2023). GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Physical Review X, 13(1), 011048.
- LISA Consortium. (2017). Laser Interferometer Space Antenna. arXiv preprint arXiv:1702.00786.
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Penrose, R. (2010). Cycles of Time: An Extraordinary New View of the Universe. Jonathan Cape, London.
- Planck Collaboration. (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. [CrossRef]
- Randall, L.; Sundrum, R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. 2022, 934, L7. [Google Scholar] [CrossRef]
- Rovelli, C. (2004). Quantum gravity. Cambridge University Press.
- Sakharov, A. D. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Letters, 5(1), 24-27.
- Sciama, D. W. (1962). On the analogy between charge and spin in general relativity. Recent Developments in General Relativity, 415-439.
- SKA Organisation. (2019). Science with the Square Kilometre Array. Publications of the Astronomical Society of Australia, 36, e007.
- Skordis, C.; Złośnik, T. New Relativistic Theory for Modified Newtonian Dynamics. Phys. Rev. Lett. 2021, 127, 161302. [Google Scholar] [CrossRef]
- Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Susskind, L. Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 1979, 20, 2619–2625. [Google Scholar] [CrossRef]
- Veltman, M. (1981). The infrared-ultraviolet connection. Acta Physica Polonica B, 12(5), 437-457.
- Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 1–27. [Google Scholar] [CrossRef]
- Weinberg, S. Implications of dynamical symmetry breaking: An addendum. Phys. Rev. D 1979, 19, 1277–1280. [Google Scholar] [CrossRef]
- Weinberg, S. (1989). The cosmological constant problem. Reviews of Modern Physics, 61(1), 1-23.
- Wilson, K.G. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B 1971, 4, 3174–3183. [Google Scholar] [CrossRef]
- Witten, E. (1981). Dynamical breaking of supersymmetry. Nuclear Physics B, 188(3), 513-554.
- XENON Collaboration. (2023). First dark matter search with nuclear recoils from the XENONnT experiment. Physical Review Letters, 131(4), 041003.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
