Submitted:
20 August 2025
Posted:
22 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. FFT-Based Method for Wavelength Retrieval from Remote Sensing Imagery
2.2. Correction Methods for Anomalous Wavelength Retrievals from Remote Sensing Imagery
2.2.1. Truncation of Distorted Pixel Values
2.2.2. Detrending of Non-Stationary Pixel Values
2.2.3. Windowing to Suppress Edge Discontinuities
2.3. Depth Inversion from Remotely Sensed Wavelengths
3. Case Study: Wavelength Retrieval and Bathymetry Inversion in Sanya Bay
3.1. Study Area and Data
3.2. Wavelength Retrieval Results Without Spectral Leakage Suppression
3.3. Wavelength Retrieval Results with Spectral Leakage Suppression
3.3.1. Results After Truncation of Distorted Pixel Values
3.3.2. Results After Detrending of Pixel Values
3.3.3. Results After Windowing of Subimages
3.3.4. Wavelength Retrieval Results After Combined Spectral Leakage Suppression
3.4. Bathymetric Results from Wave-Derived Wavelengths
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Almar, R. Pan-European Satellite-Derived Coastal Bathymetry—Review, User Needs and Future Services. Frontiers in Marine Science 2021, 8. [Google Scholar] [CrossRef]
- Huang, R.; Yu, K.; Wang, Y.; Wang, J.; Mu, L.; Wang, W. Bathymetry of the Coral Reefs of Weizhou Island Based on Multispectral Satellite Images. Earth-Science Reviews. [CrossRef]
- Mavraeidopoulos, A.K.; Pallikaris, A.; Oikonomou, E. Satellite Derived Bathymetry (SDB) and Safety of Navigation. International Hydrographic Review 2017. [Google Scholar]
- Pe’eri, S.; Parrish, C.; Azuike, C.; Alexander, L.; Armstrong, A. Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Complete. Marine Geodesy 2014. [Google Scholar] [CrossRef]
- Grządziel, A. Method of Time Estimation for the Bathymetric Surveys Conducted with a Multi-Beam Echosounder System. Applied Sciences 2023, 13, 10139. [Google Scholar] [CrossRef]
- Saylam, K.; Hupp, J.R.; Andrews, J.R.; Averett, A.R.; Knudby, A.J. Quantifying Airborne Lidar Bathymetry Quality-Control Measures: A Case Study in Frio River, Texas. Sensors 2018, 18, 4153. [Google Scholar] [CrossRef]
- Ferreira, I.O.; Andrade, L.C.D.; Teixeira, V.G.; Santos, F.C.M. State of Art of Bathymetric Surveys. Bol. Ciênc. Geod. 2022, 28, e2022002. [Google Scholar] [CrossRef]
- He, J.; Zhang, S.; Cui, X.; Feng, W. Remote Sensing for Shallow Bathymetry: A Systematic Review. 2024.
- Lyzenga, D.R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Appl. Opt. 1978, 17, 379. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-resolution Satellite Imagery over Variable Bottom Types. Limnology & Oceanography 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model. Optical Society of America 1998. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters: 2. Deriving Bottom Depths and Water Properties by Optimization. Optical Society of America 1999. [Google Scholar] [CrossRef]
- Casal, G. Assessment of Empirical Algorithms for Bathymetry Extraction Using Sentinel-2 Data. International Journal of Remote Sensing 2018. [Google Scholar] [CrossRef]
- Kutser, T.; Vahtmäe, E.; Praks, J. A Sun Glint Correction Method for Hyperspectral Imagery Containing Areas with Non-Negligible Water Leaving NIR Signal. 2009.
- Brusch, S.; Held, P.; Lehner, S.; Rosenthal, W.; Pleskachevsky, A. Underwater Bottom Topography in Coastal Areas from TerraSAR-X Data. International Journal of Remote Sensing 2011, 32, 4527–4543. [Google Scholar] [CrossRef]
- Boccia, V.; Renga, A.; Moccia, A.; Zoffoli, S. Tracking of Coastal Swell Fields in SAR Images for Sea Depth Retrieval: Application to ALOS L-Band Data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 2015, 8, 3532–3540. [Google Scholar] [CrossRef]
- Danilo, C.; Melgani, F. Wave Period and Coastal Bathymetry Using Wave Propagation on Optical Images. IEEE Trans. Geosci. Remote Sensing 2016, 54, 6307–6319. [Google Scholar] [CrossRef]
- Brusch, S.; Held, P.; Lehner, S.; Rosenthal, W.; Pleskachevsky, A. Underwater Bottom Topography in Coastal Areas from TerraSAR-X Data. International Journal of Remote Sensing 2011, 32, 4527–4543. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R.; Maisongrande, P. Radon-Augmented Sentinel-2 Satellite Imagery to Derive Wave-Patterns and Regional Bathymetry. Remote Sensing 2019, 11, 1918. [Google Scholar] [CrossRef]
- Pereira, P.; Baptista, P.; Cunha, T.; Silva, P.A.; Romão, S.; Lafon, V. Estimation of the Nearshore Bathymetry from High Temporal Resolution Sentinel-1A C-Band SAR Data - A Case Study. Remote Sensing of Environment 2019, 223, 166–178. [Google Scholar] [CrossRef]
- Poupardin, A.; Idier, D.; De Michele, M.; Raucoules, D. Water Depth Inversion From a Single SPOT-5 Dataset. IEEE Trans. Geosci. Remote Sensing 2016, 54, 2329–2342. [Google Scholar] [CrossRef]
- Huang, L.; Meng, J.; Fan, C.; Zhang, J.; Yang, J. Shallow Sea Topography Detection from Multi-Source SAR Satellites: A Case Study of Dazhou Island in China. Remote Sensing 2022, 14, 5184. [Google Scholar] [CrossRef]
- Leu, L.-G.; Chang, H.-W. Remotely Sensing in Detecting the Water Depths and Bed Load of Shallow Waters and Their Changes. Ocean Engineering 2005, 32, 1174–1198. [Google Scholar] [CrossRef]
- Mudiyanselage, S.D.; Wilkinson, B.; Abd-Elrahman, A. Automated High-Resolution Bathymetry from Sentinel-1 SAR Images in Deeper Nearshore Coastal Waters in Eastern Florida. Remote Sensing 2023, 16, 1. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Hou, P.; Fu, B.; Zheng, G. Mapping the Bathymetry of Shallow Coastal Water Using Single-Frame Fine-Resolution Optical Remote Sensing Imagery. Acta Oceanol. Sin. 2016, 35, 60–66. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, S.; Cheng, S.; Zhang, W.; Cao, G. Nearshore Depth Estimation Using Fine-Resolution Remote Sensing of Ocean Surface Waves. Sensors 2023, 23, 9316. [Google Scholar] [CrossRef]
- Bian, X. The Feasibility of Assessing Swell-Based Bathymetry Using SAR Imagery from Orbiting Satellites. ISPRS Journal of Photogrammetry and Remote Sensing 2020, 168, 124–130. [Google Scholar] [CrossRef]
- Jwo, D.-J.; Wu, I.-H.; Chang, Y. Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage. E3S Web Conf. 2019, 94, 03001. [Google Scholar] [CrossRef]
- Manco, G.; Masciari, E. XML Class Outlier Detection. In Proceedings of the Proceedings of the 16th International Database Engineering & Applications Sysmposium on - IDEAS ’12; ACM Press: Prague, Czech Republic, 2012; pp. 155–164. [Google Scholar]
- Rasheed, F.; Peng, P.; Alhajj, R.; Rokne, J. Fourier Transform Based Spatial Outlier Mining. In Intelligent Data Engineering and Automated Learning - IDEAL 2009; Corchado, E., Yin, H., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; ISBN 978-3-642-04393-2. [Google Scholar]
- Alexandrov, T.; Bianconcini, S.; Dagum, E.B.; Maass, P.; McElroy, T.S. A Review of Some Modern Approaches to the Problem of Trend Extraction. Econometric Reviews 2012, 31, 593–624. [Google Scholar] [CrossRef]
- Mitov, I.P. A Method for Assessment and Processing of Biomedical Signals Containing Trend and Periodic Components. Medical Engineering & Physics 1998, 20, 660–668. [Google Scholar] [CrossRef]
- Harris, F.J. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- China Satellite Navigation Conference (CSNC) 2013 Proceedings: BeiDou/GNSS Navigation Applications • Test; Assessment Technology • User Terminal Technology; Sun, J. , Jiao, W., Wu, H., Shi, C., Eds.; Lecture Notes in Electrical Engineering; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; ISBN 978-3-642-37397-8. [Google Scholar]
- Brusch, S.; Held, P.; Lehner, S.; Rosenthal, W.; Pleskachevsky, A. Underwater Bottom Topography in Coastal Areas from TerraSAR-X Data. International Journal of Remote Sensing 2011, 32, 4527–4543. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Http://Www.Jstor.Org Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 1977, 39, 1–38. [Google Scholar] [CrossRef]
- Vieira, S.R.; Carvalho, J.R.P.D.; Ceddia, M.B.; González, A.P. Detrending Non Stationary Data for Geostatistical Applications. Bragantia 2010, 69, 01–08. [Google Scholar] [CrossRef]
- Vieira, S.R. GEOESTATÍSTICA EM ESTUDOS DE VARIABILIDADE ESPACIAL DO SOLO. 2000.
- Speake, T.; Mersereau, R. A Note on the Use of Windows for Two-Dimensional FIR Filter Design. IEEE Trans. Acoust., Speech, Signal Process. 1981, 29, 125–127. [Google Scholar] [CrossRef]
- Labuda, C.; Labuda, I. On the Mathematics Underlying Dispersion Relations. EPJ H 2014, 39, 575–589. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Yurovskaya, M.; Chapron, B.; Collard, F.; Donlon, C. Sun Glitter Imagery of Ocean Surface Waves. Part 1: Directional Spectrum Retrieval and Validation: SUN GLITTER IMAGERY OF SURFACE WAVES. J. Geophys. Res. Oceans 2017, 122, 1369–1383. [Google Scholar] [CrossRef]
- Tucker, M.J. Waves in Ocean Engineering: Measurement, Analysis and Interpretation; Ellis horwood series in marine science; Ellis Horwood: New York London Toronto, 1991; ISBN 978-0-13-932955-5. [Google Scholar]
- Dynamics and Modelling of Ocean Waves; Komen, G.J., Hasselmann, K., Eds.; 1. paperback ed. (with corrections).; Cambridge Univ. Press: Cambridge, 1996; ISBN 978-0-521-57781-6.
- Bondur, V.; Murynin, A. The Approach for Studying Variability of Sea Wave Spectra in a Wide Range of Wavelengths from High-Resolution Satellite Optical Imagery. JMSE 2021, 9, 823. [Google Scholar] [CrossRef]
- Piotrowski, C.C.; Dugan, J.P. Accuracy of Bathymetry and Current Retrievals from Airborne Optical Time-Series Imaging of Shoaling Waves. IEEE Trans. Geosci. Remote Sensing 2002, 40, 2606–2618. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
