Submitted:
18 August 2025
Posted:
19 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Insect Sources
2.2. Larval Rearing and Starvation Treatments
2.3. Adult Mating and Oviposition
2.4. Data analysis
2.4.1. Life Table Data Analysis
2.4.2. Population Projection
3. Results and Analyses
3.1. Effects of Starvation on Developmental Duration and Survival
3.2. Effects of Starvation on Adult Lifespan and Expectancy
3.3. Effects of Starvation on Butterfly Fecundity
3.4. Effects of Starvation on Butterfly Population Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Change on the Future of Biodiversity. Ecology Letters 2012, 15, 365–377. [CrossRef] [PubMed]
- Román-Palacios, C.; Wiens, J.J. Recent Responses to Climate Change Reveal the Drivers of Species Extinction and Survival. Proceedings of the National Academy of Sciences 2020, 117, 4211–4217. [Google Scholar] [CrossRef]
- Hung, K.-L.J.; Sandoval, S.S.; Ascher, J.S.; Holway, D.A. Joint Impacts of Drought and Habitat Fragmentation on Native Bee Assemblages in a California Biodiversity Hotspot. Insects 2021, 12, 135. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Further Evidence for a Global Decline of the Entomofauna. Austral Entomology 2021, 60, 9–26. [Google Scholar] [CrossRef]
- Finn, C.; Grattarola, F.; Pincheira-Donoso, D. More Losers than Winners: Investigating Anthropocene Defaunation through the Diversity of Population Trends. Biological Reviews 2023, 98, 1732–1748. [Google Scholar] [CrossRef]
- Hill, G.M.; Kawahara, A.Y.; Daniels, J.C.; Bateman, C.C.; Scheffers, B.R. Climate Change Effects on Animal Ecology: Butterflies and Moths as a Case Study. Biological Reviews 2021, 96, 2113–2126. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dubey, V.K.; Choudhury, S.; Das, A.; Jeengar, D.; Sujatha, B.; Kumar, A.; Kumar, N.; Semwal, A.; Kumar, V. Insects as Bioindicator: A Hidden Gem for Environmental Monitoring. Front. Environ. Sci. 2023, 11. [Google Scholar] [CrossRef]
- Warren, M.S.; Maes, D.; van Swaay, C.A.M.; Goffart, P.; Van Dyck, H.; Bourn, N.A.D.; Wynhoff, I.; Hoare, D.; Ellis, S. The Decline of Butterflies in Europe: Problems, Significance, and Possible Solutions. Proceedings of the National Academy of Sciences 2021, 118, e2002551117. [Google Scholar] [CrossRef]
- Navarro-Cano, J.A.; Karlsson, B.; Posledovich, D.; Toftegaard, T.; Wiklund, C.; Ehrlén, J.; Gotthard, K. Climate Change, Phenology, and Butterfly Host Plant Utilization. AMBIO 2015, 44, 78–88. [Google Scholar] [CrossRef]
- Herremans, M.; Gielen, K.; Van Kerckhoven, J.; Vanormelingen, P.; Veraghtert, W.; Swinnen, K.R.R.; Maes, D. Abundant Citizen Science Data Reveal That the Peacock Butterfly Aglais Io Recently Became Bivoltine in Belgium. Insects 2021, 12, 683. [Google Scholar] [CrossRef]
- Ellis, S.; Bourn, N.; Buiman, C. Landscape-Scale Conservation for Butterflies and Moths: Lessons from the UK; Butterfly Conservation: Wareham, 2012. [Google Scholar]
- Marini, L.; Zalucki, M.P. Density-Dependence in the Declining Population of the Monarch Butterfly. Sci Rep 2017, 7, 13957. [Google Scholar] [CrossRef] [PubMed]
- Ubach, A.; Páramo, F.; Prohom, M.; Stefanescu, C. Weather and Butterfly Responses: A Framework for Understanding Population Dynamics in Terms of Species’ Life-Cycles and Extreme Climatic Events. Oecologia 2022, 199, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.F.; Lindgren, B.S. Range of Gypsy Moth in British Columbia: A Study of Climatic Suitability. Journal of the Entomological Society of British Columbia 1995, 92, 45–56. [Google Scholar]
- Varela, L.G.; Bernays, E.A. Behavior of Newly Hatched Potato Tuber Moth Larvae, Phthorimaea Operculella Zell. (Lepidoptera: Gelechiidae), in Relation to Their Host Plants. J Insect Behav 1988, 1, 261–275. [Google Scholar] [CrossRef]
- Hanspach, J.; Schweiger, O.; Kühn, I.; Plattner, M.; Pearman, P.B.; Zimmermann, N.E.; Settele, J. Host Plant Availability Potentially Limits Butterfly Distributions under Cold Environmental Conditions. Ecography 2014, 37, 301–308. [Google Scholar] [CrossRef]
- Curtis, R.J.; Brereton, T.M.; Dennis, R.L.H.; Carbone, C.; Isaac, N.J.B. Butterfly Abundance Is Determined by Food Availability and Is Mediated by Species Traits. Journal of Applied Ecology 2015, 52, 1676–1684. [Google Scholar] [CrossRef]
- Dennis, R.L.H.; Shreeve, T.G.; Arnold, H.R.; Roy, D.B. Does Diet Breadth Control Herbivorous Insect Distribution Size? Life History and Resource Outlets for Specialist Butterflies. J Insect Conserv 2005, 9, 187–200. [Google Scholar] [CrossRef]
- Gotthard, K.; Nylin, S.; Wiklund, C. Adaptive Variation in Growth Rate: Life History Costs and Consequences in the Speckled Wood Butterfly, Pararge Aegeria. Oecologia 1994, 99, 281–289. [Google Scholar] [CrossRef]
- Crone, E.E.; Schultz, C.B. Host Plant Limitation of Butterflies in Highly Fragmented Landscapes. Theor Ecol 2022, 15, 165–175. [Google Scholar] [CrossRef]
- Jones, L.C. Insects Allocate Eggs Adaptively According to Plant Age, Stress, Disease or Damage. Proceedings of the Royal Society B: Biological Sciences 2022, 289, 20220831. [Google Scholar] [CrossRef]
- Rausher, M.D.; Papaj, D.R. Demographic Consequences of Descrimination among Conspecific Host Plants by Battus Philenor Butterflies. Ecology 1983, 64, 1402–1410. [Google Scholar] [CrossRef]
- Chen, L. Population Ecology of Luehdorfia chinensis in Taohongling, Jiangxi. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2023. [Google Scholar]
- Xu, X.L. A Discussion on the Distribution Boundaries of Luehdorfia chinensis. Agriculture and Technology 2014, 34, 254. [Google Scholar]
- Yuan, D.C.; Mai, G.Q.; Xue D., Y.; Hu, C.; Ye, G.Y. The Habitat Biology and Conservation Status of Luehdorfia chinensis (Lepidoptera: Papilionidae). Chinese Biodiversity 1998, 26–36. [Google Scholar] [CrossRef]
- Hu, C.; Wu, X.J.; Wang, X.M. The Biology of Luehdorfia Chinensis Leech, A Rare and Endangered Butterfly. Acta Entomologica Sinica 1992, 195–199. [Google Scholar] [CrossRef]
- Li, C.L. The Early Stages of Chinese Rhopalocera— Luehdorfia chinensis Leech (Parnassiidae: Zerynthiinae). Acta Entomologica Sinica 1978, 161, 239. [Google Scholar] [CrossRef]
- Chen, L. Wang L.; Yang W.J.; Wu W. G.; Liu X. H.; Zhang Y.; Zeng J. P. Traits Variability of Asarum forbesii and Conservation Implications to the Rare Butterfly of Luehdorfia chinensis in Taohongling, South China. Acta Agriculturae Universitatis Jiangxiensis 2022, 44, 1122–1134. [Google Scholar] [CrossRef]
- Zou, M.H. Limitation Effect and Growth Conditions of the Hostplant Asarum Forbesii on the Butterfly Population of Luehdorfia chinensis in Taohongling. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China 2025. [Google Scholar]
- Zalucki, M.P.; Lammers, J.H. Dispersal and Egg Shortfall in Monarch Butterflies: What Happens When the Matrix Is Cleaned Up?
- He, G.Q.; Jia F., H.; Zhu H., B. The Species Distribution and Quantity Surveying of Luehdorfia Chinese (Leech) in JiangXi. Journal of Jiangxi University of Tcm 2011, 23, 75–76. [Google Scholar]
- Su, J. Geographical Distributions, Environmental Niches and Conservation in the Rare Butterflies of Luehdorfia Spp. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2020. [Google Scholar]
- Wang D. Q.; Huang S. H. Medicinal Plants of Asarumin Anhui Province. China Journal of Chinese Materia Medica 1989, 6–8, 61.
- Nie, A.Z.; Bian, M.; Zhu, C.S.; Gao, M.M. Mechanism of Asari Radix et Rhizoma water extract induced liver injury based on proteomics. Chinese Traditional and Herbal Drugs 2024, 55, 5145–5153. [Google Scholar]
- Jeong, H.J.; Kim, J.G. Small-Scale Spatial Genetic Structure of Asarum Sieboldii Metapopulation in a Valley. j ecology environ 2021, 45, 11. [Google Scholar] [CrossRef]
- Yang, Z.L. The Geographical Distribution of Asarum (Aristolochiaceae) from Sichuan Province in China. Guihaia 1988, 83–88. [Google Scholar]
- Jonathan, B.; Craig, H.-T. Red List of Threatened Species: A Global Species Assessment; IUCN-The World Conservation Union, 2004.
- Taohongling Sika Deer Reserve Jiangxi Taohongling Meihualu Baohuqu; China Forestry Publishing House: Beijing, 2000.
- Guo, H.; Jia, N.; Chen, H.; Xie, D.; Chi, D. Preliminary Analysis of Transcriptome Response of Dioryctria Sylvestrella (Lepidoptera: Pyralidae) Larvae Infected with Beauveria Bassiana under Short-Term Starvation. Insects 2023, 14, 409. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two New Methods for the Study of Insect Population Ecology. Bull. Inst. Zool., Acad. Sin 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates among Individuals. Environmental Entomology 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Iranipour, S.; Mahmoodi Arabi, S.; Michaud, J.P. Does the Two-Sex Life Table for Sexual Populations Invalidate Those Based Solely on Female Cohorts? Ann Entomol Soc Am 2025, 118, 189–205. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, F.; Tan, X.; Zhang, T.; Teng, Z.; Fan, Y.; Wan, F.; Zhou, H. Use of Age-Stage, Two-Sex Life Table to Compare the Fitness of Bactrocera Dorsalis (Diptera: Tephritidae) on Northern and Southern Host Fruits in China. Insects 2022, 13, 258. [Google Scholar] [CrossRef]
- Abbes, K.; Harbi, A.; Guerrieri, E.; Chermiti, B. Using Age-Stage Two-Sex Life Tables to Assess the Suitability of Three Solanaceous Host Plants for the Invasive Cotton Mealybug Phenacoccus Solenopsis Tinsley. Plants 2024, 13, 1381. [Google Scholar] [CrossRef] [PubMed]
- Rismayani, *!!! REPLACE !!!*; Ullah, M.S.; Chi, H.; Gotoh, T. Impact of Constant and Fluctuating Temperatures on Population Characteristics of Tetranychus Pacificus (Acari: Tetranychidae). J Econ Entomol 2021, 114, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bashir, N.H.; Naeem, M.; Tian, R.; Tian, X.; Chen, H. Age-Stage, Two-Sex Life Table of Atractomorpha Lata (Orthoptera: Pyrgomorphidae) at Different Temperatures. Insects 2024, 15, 493. [Google Scholar] [CrossRef] [PubMed]
- El Aalaoui, M.; Sbaghi, M.; Mokrini, F. Effect of Temperature on the Development and Reproduction of Olive Psyllid Euphyllura Olivina Costa (Hemiptera: Psyllidae). Crop Protection 2025, 190, 107131. [Google Scholar] [CrossRef]
- Bankar, D.R.; Bhamare, V.K. Comparative Biology, Life Tables and Intrinsic Rate of Increase of Spodoptera Frugiperda (J.E. Smith) Reared on Pearl Millet and Sugarcane. Journal of Entomological Research 2023, 47, 866–870. [Google Scholar] [CrossRef]
- Chi, H. TIMING-MSChart: A Computer Program for the Population Projection Based on Age-Stage, Two-Sex Life Table Available online:. Available online: http://140.120.197.173/Ecology/Download/Timing-MSChart.rar (accessed on 20 January 2020).
- Chi, H. TWOSEX-MSChart: A Computer Program for Age Stage, Two-Sex Life Table Analysis, National Chung Hsing University: Taichung, Taiwan, 2018.
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex Responses of Global Insect Pests to Climate Warming. Frontiers in Ecology and the Environment 2020, 18, 141–150. [Google Scholar] [CrossRef]
- Chen, A.; Liu, B.; Zhou, R.; Zhang, H.; Zhou, L.; Xie, X.; Zhuo, Z.; Xu, D. Habitat Suitability Analysis for Luehdorfia Chinensis Leech, 1893 (Lepidoptera: Papilionidae) in the Middle and Lower Yangtze River: A Study Based on the MaxEnt Model. Insects 2025, 16, 396. [Google Scholar] [CrossRef]
- Wang, R.P.; Li, L. The Extinction Vortex of Small Population. Journal of Bology 2008, 25, 14–16. [Google Scholar]
- Bin, W.; Weiping, W.; Haihua, W.; Gang, H. A Retrospective Analysis on the Population Viability of the Yangtze River Dolphin or Baiji (Lipotes Vexillifer). Indian Journal of Animal Research 2022, 56(6): 775-779.
- Dennis, R.L.H.; Shreeve, T.G.; Van Dyck, H. Towards a Functional Resource-Based Concept for Habitat: A Butterfly Biology Viewpoint. Oikos 2003, 102, 417–426. [Google Scholar] [CrossRef]
- Iutzi, I.; Crews, T.; Crews, M. Perennializing Grain Crop Agriculture: A Pathway. The Land 2020, 823–5376. [Google Scholar]
- McCue, M.D. Starvation Physiology: Reviewing the Different Strategies Animals Use to Survive a Common Challenge. Comp Biochem Physiol A Mol Integr Physiol 2010, 156, 1–18. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.F.; Ezenwa, V.O.; Altizer, S. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies. Physiological and Biochemical Zoology 2016. [Google Scholar] [CrossRef] [PubMed]
- Bauerfeind, S.S.; Fischer, K. Effects of Food Stress and Density in Different Life Stages on Reproduction in a Butterfly. Oikos 2005, 111, 514–524. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Zheng, J.; Li, T.; Zhao, L. Effects of Larval Starvation Stress on the Life History and Adult Fitness of Fall Webworm, Hyphantria Cunea. Insects 2025, 16, 410. [Google Scholar] [CrossRef]
- Brueggemann, L.; Singh, P.; Müller, C. Life Stage- and Sex-Specific Sensitivity to Nutritional Stress in a Holometabolous Insect. Ecology and Evolution 2025, 15, e70764. [Google Scholar] [CrossRef]
- Elkin, C.M.; Reid, M.L. Low Energy Reserves and Energy Allocation Decisions Affect Reproduction by Mountain Pine Beetles, Dendroctonus Ponderosae. Functional Ecology 2005, 19, 102–109. [Google Scholar] [CrossRef]
- García-Roger, E.M.; Martínez, A.; Serra, M. Starvation Tolerance of Rotifers Produced from Parthenogenetic Eggs and from Diapausing Eggs: A Life Table Approach.
- Billings, A.C.; Schultz, K.E.; Hernandez, E.A.; Jones, W.E.; Price, D.K. Male Courtship Behaviors and Female Choice Reduced during Experimental Starvation Stress. Behav Ecol 2019, 30, 231–239. [Google Scholar] [CrossRef]
- Gols, R.; Croijmans, L.; Dicke, M.; van Loon, J.J.A.; Harvey, J.A. Plant Quantity Affects Development and Reproduction of a Gregarious Butterfly More than Plant Quality. Entomologia Experimentalis et Applicata 2022, 170, 646–655. [Google Scholar] [CrossRef]
- Zhao, X.; Geng, Y.; Hu, T.; Xie, C.; Xu, W.; Zuo, Z.; Xue, M.; Hao, D. Ecological Strategies of Hyphantria Cunea (Lepidoptera: Arctiidae) Response to Different Larval Densities. Front. Ecol. Evol. 2023, 11. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Zhang, S.-S.; Niu, B.-L.; Ji, D.-F.; Liu, X.-J.; Li, M.-W.; Bai, H.; Palli, S.R.; Wang, C.-Z.; Tan, A.-J. A Determining Factor for Insect Feeding Preference in the Silkworm, Bombyx Mori. PLOS Biology 2019, 17, e3000162. [Google Scholar] [CrossRef]
- Boggs, C.L. Understanding Insect Life Histories and Senescence through a Resource Allocation Lens. Functional Ecology 2009, 23, 27–37. [Google Scholar] [CrossRef]
- Fagan, W.F.; Holmes, E.E. Quantifying the Extinction Vortex. Ecology Letters 2006, 9, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, M.E.; Soule, M.E. Minimum Viable Populations: Processes of Extinction. In Conservation Biology: The Science of Scarcity and Diversity (Ed. Soule´, M.E.). In; Sinauer Associates, MA: Sunderland, 1986; pp. 19–34. [Google Scholar]
- Nordstrom, S.W.; Hufbauer, R.A.; Olazcuaga, L.; Durkee, L.F.; Melbourne, B.A. How Density Dependence, Genetic Erosion and the Extinction Vortex Impact Evolutionary Rescue. Proceedings of the Royal Society B 2023. [Google Scholar] [CrossRef] [PubMed]
- Brunbjerg, A.K.; Høye, T.T.; Eskildsen, A.; Nygaard, B.; Damgaard, C.F.; Ejrnæs, R. The Collapse of Marsh Fritillary (Euphydryas Aurinia) Populations Associated with Declining Host Plant Abundance. Biological Conservation 2017, 211, 117–124. [Google Scholar] [CrossRef]
- James, D.G. Monarch Butterflies in Western North America: A Holistic Review of Population Trends, Ecology, Stressors, Resilience and Adaptation. Insects 2024, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Lukens, L.; Thieme, J.; Thogmartin, W.E. Milkweed and Floral Resource Availability for Monarch Butterflies (Danaus Plexippus) in the United States. Front. Ecol. Evol. 2024, 12. [Google Scholar] [CrossRef]
- Kukkonen, J.M.; von Numers, M.; Brommer, J.E. Conserving Apollo Butterflies: Habitat Characteristics and Conservation Implications in Southwest Finland. J Insect Conserv 2024, 28, 1199–1210. [Google Scholar] [CrossRef]





| Stages | CK(n) | Starvation treatments (ST) | ||
|---|---|---|---|---|
| 3rd(n) | 4th(n) | 5th(n) | ||
| egg | 13.00±0.00a (30) | 13.97±0.18a (30) | 13.33±0.48a (30) | 13.20±0.41a (30) |
| 1st instar larvae | 7.00±0.00a (30) | 7.00±0.00a (30) | 7.00±0.00a (30) | 7.00±0.00a (30) |
| 2nd instar larvae | 6.00±0.00a (30) | 6.00±0.00a (30) | 5.83±0.38a (30) | 6.00±0.00a (30) |
| 3rd instar larvae | 5.69±0.10b (30) | 11.60±0.40a (30) | 5.47±0.51b (30) | 5.73±0.57b (30) |
| 4th instar larvae | 4.34±0.09b (30) | 4.77±0.43b (30) | 7.03±0.18a (30) | 4.33±0.48b (30) |
| 5th instar larvae | 8.48±0.09b (30) | 7.20±0.41c (30) | 8.37±0.49b (30) | 11.23±0.41a (30) |
| Larval duration | 31.37±0.76c (30) | 35.93±0.64a (30) | 33.77±0.90b (30) | 33.97±0.72b (30) |
| Pupa | 313.2±0.97a (14) | 308.14±0.71b (6) | 309.00±0.00b (2) | 308.75±0.85b (5) |
| Population parameters | CK (n=30) | ST (n=90) | Total (n=120) |
|---|---|---|---|
| Intrinsic rate of increase(rm) | 0.0064±0.0026a | 0.0033±0.0016b | 0.0032±0.0013b |
| Net reproductive rate(R0) | 6.77±4.72a | 2.74±1.4b | 2.83±1.19b |
| Finite rate of increase(λ) | 1.0064±0.0027a | 1.0033 ±0.0017a | 1.0032±0.0013a |
| Total fecundity(vx) | 40.6±27.53a | 19±8.92b | 25±9.42b |
| Mean generation time(T) | 357.87±0.69a | 358.66±0.84a | 356.64±1.03a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).