Submitted:
04 September 2025
Posted:
05 September 2025
You are already at the latest version
Abstract
Keywords:
Introduction
DNA Containment Mechanism of the ‘Genetic Zipper’ Method
CUAD Biotechnology: Step-by Step Action
- Step 1: Arrest of ribosome function leading to hypercompensation of target rRNA, subsequent depletion of ATP and ‘kinase disaster’ (Oberemok et al. 2025a).
- Step 2: Enzymatic degradation of target rRNA by DNA-guided rRNases, such as RNase H1 (Gal’chinsky et al. 2024; Kumar et al. 2025; Oberemok et al. 2025a).
Comparison with RNAi and CRISPR/Cas
- CUADb is one of three antisense technologies alongside RNAi and CRISPR/Cas.
- All involve duplex formation with unmodified nucleic acids and nuclease-mediated gene silencing: RNAi: guide RNA–mRNA (Argonaute); CUADb: guide DNA–rRNA (DNA-guided rRNases); CRISPR/Cas: guide RNA–DNA (Cas proteins) (Kumar et al. 2025).
Use of DNAInsector for Oligo Design
- DNAInsector (dnainsector.com) generates target oligonucleotides in ~10 seconds (DNAInsector 2025).
- Simplifies oligo pesticide design, making it accessible even to non-specialists.
Practical Implementation and Application Strategy
Selection of Pest Targets
- 12 DNA pesticides developed for important pests (11 Sternorrhyncha and 1 spider mite), chosen due to experimental precedence (Oberemok et al. 2024a).
Oligo Pesticide Application Methods and Dosages
- Application via cold fogger or backpack sprayer using 10–20 micron droplets.
- Dosage: Trees: 10–12 g oligo in 180–200 L water per hectare (400–500 trees); Bushes/grasses: 9–10 g in 180–200 L (Oberemok et al. 2025c).
Oligo Pesticide Application Methods and Dosages
- Pesticides are primarily contact-based, not systemic. Direct contact with pest integument is required (Oberemok et al. 2025c).
Case Studies: Proposed Oligonucleotide Pesticides for Showing Robustness of DNAInsector Algorithm
Selection of Insect Pests
- 12 pests from 5 continents, including hemipterans like Myzus persicae, Diaphorina citri, Planococcus citri, and the spider mite Panonychus ulmi.
Pest-Specific Oligo Design and Targets
- Oligonucleotide pesticides target 18S, 5.8S, ITS2, 28S, and mitochondrial 16S rRNA using 11-nt antisense DNA sequences (Table 1).
Global Representation of Species
- Origin of pests illustrated in Figure 2.
- Species include those affecting apples, potatoes, citrus, coffee, and forest trees (e.g., Adelges tsugae, Paracoccus marginatus) (Soltis et al. 2014; Buzzetti et al. 2015; García Morales et al. 2016; Alba-Tercedor et al. 2021; Kar et al. 2023).
Advantages of the ‘Genetic Zipper’ Method
Cost and Ease of Synthesis
- CUADb is more cost-effective than RNAi and CRISPR/Cas technologies (Oberemok et al. 2024c; 2024d).
Safety and Environmental Benefits
- Low carbon footprint, biodegradable, safe for non-target species (Gal’chinsky et al. 2023; Oberemok et al. 2024b).
High Target Specificity
- Antisense oligos designed for specific rRNA sequences reduce off-target impacts (Gal’chinsky et al. 2024; Oberemok et al. 2025a).
Resistance Management Potential
- Novel mode of action (DNA containment mechanism) may help prevent development of target-site resistance (Oberemok et al. 2024c).
Predictive Design Using Related Species
- Effectiveness can be predicted for untested species using phylogenetic proximity (Oberemok et al. 2024a; Gavrilova et al. 2025).
Disadvantages of the ‘Genetic Zipper’ Method
Limited Pest Coverage
- Proven mainly for hemipterans, thrips and spider mites; broader validation is needed (Oberemok et al. 2024a; Gavrilova et al. 2025).
Off-Target and Specificity Concerns
- Requires careful design and consideration of pre-rRNA and mature rRNA sequences of non-target organisms to avoid unintended effects (Kumar et al. 2025).
Delivery System Limitation
- Field delivery methods are still being optimized (Oberemok et al. 2025c).
Risk of Resistance Evolution
- New resistance mechanisms may eventually emerge (Gal’chinsky et al. 2024).
Production and Cost Issue
- While cheaper than some dsRNA-based tools, it still needs specialized large-scale synthesis setups (Kumar et al. 2025).
Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abubakar M, Koul B, Chandrashekar K, Raut A, Yadav D (2022) Whitefly (Bemisia tabaci) management (WFM) strategies for sustainable agriculture. Agriculture 12(9):1317. [CrossRef]
- Alba-Tercedor J, Hunter WB, Alba-Alejandre I (2021) Using micro-computed tomography to reveal the anatomy of adult Diaphorina citri Kuwayama (Insecta: Hemiptera, Liviidae) and how it pierces and feeds within a citrus leaf. Sci Rep 11(1):1358. [CrossRef]
- Ali J, Bayram A, Mukarram M, Zhou F, Karim MF, Hafez MMA, Mahamood M, Yusuf AA, King PJH, Adil MF, Ma Z, Shamsi IH (2023) Peach–Potato Aphid Myzus persicae: Current Management Strategies, Challenges, and Proposed Solutions. Sustainability 15:11150. [CrossRef]
- Alloui-Griza R, Cherif A, Attia S, Francis F, Lognay GC, Grissa-Lebdi K (2022) Lethal Toxicity of Thymus capitatus Essential Oil Against Planococcus citri (Hemiptera: Pseudococcidae) and its Coccinellid Predator Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). Journal of Entomological Science 57(3):425-435. [CrossRef]
- Assouguem A, Lahlali R, Joutei AB, Kara M, Bari A, Aberkani K, Kaur S, Mokrini F, Lazraq A (2024) Assessing Panonychus ulmi (Acari: Tetranychidae) Infestations and Their Key Predators on Malus domestica Borkh in Varied Ecological Settings. Agronomy 14:457. [CrossRef]
- Avila CA, Marconi TG, Viloria Z, Kurpis J, Del Rio SY (2019) Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum. Sci Rep 9(1):14031. [CrossRef]
- Buzzetti KA, Chorbadjian RA, Fuentes-Contreras E, Gutiérrez M, Ríos JC, Nauen R (2015) Monitoring and mechanisms of organophosphate resistance in San Jose scale, Diaspidiotus perniciosus (Hemiptera: Diaspididae). J Appl Entomol 140:507–516. [CrossRef]
- Cabrera-Asencio I, Dietrich CH, Zahniser JN (2023) A new invasive pest in the Western Hemisphere: Amrasca biguttula (Hemiptera: Cicadellidae). The Florida Entomologist. 106(4):263–266. https://www.jstor.org/stable/48763130.
- DNAInsector (2025) Available via DIALOG. https://dnainsector.com/?token=e870a6fc9abe44d18fdbbcf909805689.
- Eleftheriadou N, Lubanga UK, Lefoe GK, Seehausen ML, Kenis M, Kavallieratos NG, Avtzis DN (2023) Uncovering the Male Presence in Parthenogenetic Marchalina hellenica (Hemiptera: Marchalinidae): Insights into Its mtDNA Divergence and Reproduction Strategy. Insects 14:256. [CrossRef]
- Gal’chinsky NV, Yatskova EV, Novikov IA, Sharmagiy AK, Plugatar YV, Oberemok VV (2024) Mixed insect pest populations of Diaspididae species under control of oligonucleotide insecticides: 3′-end nucleotide matters. Pesticide Biochemistry and Physiology 200:105838. [CrossRef]
- Gal’chinsky NV, Yatskova EV, Novikov IA, Useinov RZ, Kouakou NJ, Kouame KF, Kra KD, Sharmagiy AK, Plugatar YV, Laikova KV, Oberemok VV (2023) Icerya purchasi Maskell (Hemiptera: Monophlebidae) Control Using Low Carbon Footprint Oligonucleotide Insecticides. Int J Mol Sci 24(14):11650. [CrossRef]
- García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2016) ScaleNet: A literature-based model of scale insect biology and systematics. Database 2016:bav118. [CrossRef]
- Gavrilova D, Grizanova E, Novikov I, Laikova E, Zenkova A, Oberemok V, Dubovskiy I (2025). Antisense DNA acaricide targeting pre-rRNA of two-spotted spider mite Tetranychus urticae as efficacy-enhancing agent of fungus Metarhizium robertsii. Journal of Invertebrate Pathology 211:108297. [CrossRef]
- Gounari S, Zotos CE, Dafnis SD, Moschidis G, Papadopoulos GK (2021) On the impact of critical factors to honeydew honey production: The case of Marchalina hellenica and pine honey. J Apic Res 62:383–393. [CrossRef]
- Joshi NK, Phan NT, Biddinger DJ (2023) Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects 14(3):228. [CrossRef]
- Kar A, Majhi D, Mishra DK (2023) First report of Coccus viridis (Green) as a pest of dragonfruit in West Bengal. Pest Management in Hort Ecosystems 29(2):304-306.
- Karuppiah P, Thayalan KJ, Thangam GS, Eswaranpillai U (2025) Bio-Control Agents: A Sustainable Approach for Enhancing Soil Nutrients Use Efficiency in Farming. In: Mitra D, de los Santos Villalobos S, Rani A, Elena Guerra Sierra B, Andjelković S (eds) Bio-control Agents for Sustainable Agriculture. Springer, Singapore. [CrossRef]
- Kumar H, Gal’chinsky N, Sweta V, Negi N, Filatov R, Chandel A, Oberemok V, Laikova K (2025) Perspectives of RNAi, CUADb and CRISPR/Cas as Innovative Antisense Technologies for Insect Pest Control: From Discovery to Practice. Insects 16(7):746. [CrossRef]
- Munyaneza JE (2015) Zebra Chip Disease, Candidatus Liberibacter, and Potato Psyllid: A Global Threat to the Potato Industry. Am J Potato Res 92:230–235. [CrossRef]
- Noller HF, Donohue JP, Gutell RR (2022) The universally conserved nucleotides of the small subunit ribosomal RNAs. RNA 28(5):623-644. [CrossRef]
- Oberemok V, Gal’chinsky N, Novikov I, Sharmagiy A, Yatskova E, et al. (2025a). Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum. Int J Mol Sci. 26(15):7530. [CrossRef]
- Oberemok V, Laikova K, Andreeva O, Dmitrienko A, Rybareva T, Ali J, Laikova E, Plugatar Y (2025b) DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann. Int J Mol Sci 26(15):7486. [CrossRef]
- Oberemok VV, Laikova EV, Andreeva OA, Gal’chisnky NV (2024c) Oligonucleotide insecticides and RNA-based insecticides: 16 years of experience in contact using of the next generation pest control agents. J Plant Dis Prot 131:1837-1852. [CrossRef]
- Oberemok VV, Laikova KV, Andreeva OA, Gal’chinsky NV (2024b) Biodegradation of insecticides: oligonucleotide insecticides and double-stranded RNA biocontrols paving the way for eco-innovation. Front Environ Sci 12:1430170. [CrossRef]
- Oberemok VV, Laikova KV, Gal’chinsky NV (2024) Contact unmodified antisense DNA (CUAD) biotechnology: list of pest species successfully targeted by oligonucleotide insecticides. Front Agron 6:1415314. [CrossRef]
- Oberemok VV, Laikova KV, Gal’chinsky NV (2025c) Toward Global Pesticide Market: Notes on Using of Innovative ’Genetic Zipper’ Method. Indian Journal of Entomology. [CrossRef]
- Oberemok VV, Puzanova YV, Gal’chinsky NV (2024d) The ‘genetic zipper’ method offers a cost-effective solution for aphid control. Front Insect Sci 4:1467221. [CrossRef]
- Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H, Thakur N, Rai P, Pandey P, Hans AL, Srivastava S, Rajapure V, Yadav SK, Singh MK, Kumar J, Chandrashekar K, Verma PC, Singh AP, Nair KN, Bhadauria S, Wahajuddin M, Singh S, Sharma S, Omkar, Upadhyay RS, Ranade SA, Tuli R, Singh PK (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nature Biotechnology 34(10):1046–1051. [CrossRef]
- Smit S, Widmann J, Knight R (2007) Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res 35(10):3339-54. [CrossRef]
- Soltis NE, Gomez S, Leisk GG, Sherwood P, Preisser EL, Bonello P, Orians CM (2014) Failure under stress: the effect of the exotic herbivore Adelges tsugae on biomechanics of Tsuga canadensis. Ann Bot 113(4):721-30. [CrossRef]
- Villavicencio-Vásquez M, Espinoza-Lozano F, Espinoza-Lozano L, Coronel-León J (2025) Biological control agents: mechanisms of action, selection, formulation and challenges in agriculture. Front Agron 7:1578915. [CrossRef]


| Common name; Latin name; plant hosts | GenBank ID | Target rRNA | Sequence of oligonucleotide pesticide (5′-3′) | Reference |
| Hemlock woolly adelgid; Adelges tsugae (Annand, 1928); feeds on the long-lived conifer eastern hemlock (Tsuga canadensis) | KT199045.1 | 18S | CACCTTAATGC | (Soltis et al. 2014) |
| San Jose scale; Diaspidiotus perniciosus (Comstock, 1881); feeds on the apple, peach, nectarine, pear, plum and cherry trees | KY085528.1 | 28S | TCCGTTTACCC | (Buzzetti et al. 2015) |
| Papaya mealybug; Paracoccus marginatus (Williams and Granara de Willink, 1992); feeds on a wide variety of taxa, with host plant records for 158 genera in 51 families | AY427410.1 | 28S | TCCATTCATGC | (García Morales et al. 2016) |
| Asian citrus psyllid; Diaphorina citri (Kuwayama, 1908); feeds on the citrus trees | MT038969.1 | ITS2 | AATATTTCAGG | (Alba-Tercedor et al. 2021) |
| Indian cotton jassid; Amrasca biguttula biguttula (Ishida, 1913); feeds on the cotton, both cultivated and wild, and eggplant | ON307472.1 | 28S | TATTCTATCGG | (Cabrera-Asencio et al. 2023) |
| Soft green scale; Coccus viridis (Green, 1889); feeds on the wide range of important crop plants are attacked, including arabica and robusta coffee, citrus, tea, mango, cassava and guava | KP189543.1 |
28S | TCCTGAATTCC | (Kar et al. 2023) |
| Citrus mealybug; Planococcus citri (Risso, 1813); feeds mainly on the citrus orchards and nurseries | XR_010559592.1 | 5.8S | TTCATCGATCC | (Alloui-Griza et al. 2022) |
| Tobacco whitefly; Bemisia tabaci (Gennadius, 1889); feeds with a broad range of host plants including tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.), okra (Abelmoschus esculentus (L.) Moench), cucumber (Cucumis sativus L.), pepper (Capsicum spp.), potato (Solanum tuberosum L.), soybean (Glycine max (L.) Merr.), cauliflower (Brassica oleracea L.), cassava (Manihot esculenta Crantz), cotton (Gossypium spp.), and several other crops of great economic importance |
MH758096.1 |
28S | CTGATTGTCCC | (Shukla et al. 2016; Abubakar et al. 2022) |
| European red spider mite; Panonychus ulmi (Koch, 1836); feeds various tree and small fruit crops, including apples (Malus domestica (Suckow) Borkh.) | AB926333.1 |
28S | TATGCTACACC | (Joshi et al. 2023; Assouguem et al. 2024) |
| Green peach aphid; Myzus persicae (Sulzer, 1776); feeds on over 40 plant families including Apiaceae (carrot, Daucus carota (Hoffmann)); Asteraceae (lettuce, Lactuca sativa (Linnaeus); artichoke, Cynara cardunculus (L.)); Amaranthaceae (beet, Beta vulgaris (L.); spinach, Spinacia oleracea (L.)); Brassicaceae (broccoli, Brassica oleracea var. italica (L.); brussels sprouts, Brassica oleracea var. gemmifera; cabbage, Brassica oleracea var. capitata (L.) etc. |
LC672084.1 |
16S | TTTATAAATCC | (Ali et al. 2023) |
| Marchalina hellenica (Gennadius, 1883); feeds on the sap of pine trees (Pinus spp.) | EU087875.1 |
28S | TCTTTCCCCGC | (Gounari et al. 2021; Eleftheriadou et al. 2023) |
| Potato psyllid; Bactericera cockerelli (Šulc, 1909); feeds on the potato (Solanum tuberosum L.) and vein-greening in tomato (Solanum lycopersicum L.) | MG988582.1 | 18S |
TTTAATGAGCC | (Munyaneza 2015; Avila et al. 2019) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
