Submitted:
18 August 2025
Posted:
19 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Sediments and Marine Ecological Cycles
3. Accumulation of HMs in Sediments and Their Effects on Marine Ecosystem
4. Management of HMs in Sediments by Phytoremediation
5. Current Challenges
6. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Wojtkowska, M.; Bogacki, J. Assessment of Trace Metals Contamination, Species Distribution and Mobility in River Sediments Using EDTA Extraction. Int. J. Environ. Res. Public Heal. 2022, 19, 6978. [Google Scholar] [CrossRef]
- Haghnazar, H.; Johannesson, K.H.; González-Pinzón, R.; Pourakbar, M.; Aghayani, E.; Rajabi, A.; Hashemi, A.A. Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: Comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach. Chemosphere 2022, 288, 132489. [Google Scholar] [CrossRef]
- Jiang, Y.; Gui, H.; Chen, C.; Wang, C.; Zhang, Y.; Huang, Y.; Yu, H.; Wang, M.; Fang, H.; Qiu, H. The Characteristics and Source Analysis of Heavy Metals in the Sediment of Water Area of Urban Scenic: A Case Study of the Delta Park in Suzhou City, Anhui Province, China. Pol. J. Environ. Stud. 2021, 30, 2127–2136. [Google Scholar] [CrossRef]
- Rezapour, S.; Asadzadeh, F.; Nouri, A.; Khodaverdiloo, H.; Heidari, M. Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin. Sci. Rep. 2022, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Ustaoğlu, F.; Tokatlı, C. Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environ. Res. 2022, 205, 112478. [Google Scholar] [CrossRef] [PubMed]
- Redwan, M.; Elhaddad, E. Assessment the Seasonal Variability and Enrichment of Toxic Trace Metals Pollution in Sediments of Damietta Branch, Nile River, Egypt. Water 2020, 12, 3359. [Google Scholar] [CrossRef]
- Emenike, P.C.; Tenebe, I.T.; Neris, J.B.; Omole, D.O.; Afolayan, O.; Okeke, C.U.; Emenike, I.K. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 2020, 265, 114795. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Haq, S.A.U.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Taş, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef]
- Saidon, N.B.; Szabó, R.; Budai, P.; Lehel, J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environ. Pollut. 2023, 340, 122815. [Google Scholar] [CrossRef]
- Yap, C.K.; Al-Mutairi, K.A. Ecological-Health Risk Assessments of Heavy Metals (Cu, Pb, and Zn) in Aquatic Sediments from the ASEAN-5 Emerging Developing Countries: A Review and Synthesis. Biology 2021, 11, 7. [Google Scholar] [CrossRef]
- Das, S.; Sultana, K.W.; Ndhlala, A.R.; Mondal, M.; Chandra, I. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Environ. Heal. Insights 2023, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, B.; Du, J.; Wang, T.; Shi, H.; Wang, F. Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China. Int. J. Environ. Res. Public Heal. 2022, 19, 9140. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, C.; Wang, J.; Xiang, Y.; Ren, M.; Qie, H.; Zhang, Y.; Yao, R.; Li, L.; Lin, A. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. Ecotoxicol. Environ. Saf. 2021, 213, 112046. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Cheng, W.; Lei, S.; Bian, Z.; Zhao, Y.; Li, Y.; Gan, Y. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 2020, 387, 121666. [Google Scholar] [CrossRef]
- Dash, S.; Borah, S.S.; Kalamdhad, A.S. Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of Deepor Beel, Assam, India. Ecol. Indic. 2020, 114. [Google Scholar] [CrossRef]
- Wang, C.; Zou, Y.; Yu, L.; Lv, Y. Potential source contributions and risk assessment of PAHs in sediments from the tail-reaches of the Yellow River Estuary, China: PCA model, PMF model, and mean ERM quotient analysis. Environ. Sci. Pollut. Res. 2020, 27, 9780–9789. [Google Scholar] [CrossRef]
- Webb, Paul. Introduction to Oceanography. Chapter 12: Ocean Sediments, Rebus Community, 2019; pp. 273–297.
- Schenone, S.; Hewitt, J.E.; Hillman, J.; Gladstone-Gallagher, R.; Gammal, J.; Pilditch, C.; Lohrer, A.M.; Ferretti, E.; Azhar, M.; Delmas, P.; et al. Seafloor sediment microtopography as a surrogate for biodiversity and ecosystem functioning. Ecol. Appl. 2024, 35, e3069. [Google Scholar] [CrossRef]
- Garber, A.I.; Zehnpfennig, J.R.; Sheik, C.S.; Henson, M.W.; Ramírez, G.A.; Mahon, A.R.; Halanych, K.M.; Learman, D.R.; Tamaki, H. Metagenomics of Antarctic Marine Sediment Reveals Potential for Diverse Chemolithoautotrophy. mSphere 2021, 6, e0077021. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Findlay, A.J.; Pellerin, A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front. Microbiol. 2019, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Amend, A.; Burgaud, G.; Cunliffe, M.; Edgcomb, V.P.; Ettinger, C.L.; Gutiérrez, M.H.; Heitman, J.; Hom, E.F.Y.; Ianiri, G.; Jones, A.C.; et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019, 10, e01189–18. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Yu, X.; Gu, H.; Liu, F.; Fan, Y.; Wang, C.; He, Q.; Tian, Y.; Peng, Y.; Shu, L.; et al. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. Microbiome 2023, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Starnawski, P.; Bataillon, T.; Ettema, T.J.G.; Jochum, L.M.; Schreiber, L.; Chen, X.; Lever, M.A.; Polz, M.F.; Jørgensen, B.B.; Schramm, A.; et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Natl. Acad. Sci. 2017, 114, 2940–2945. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Wang, L.; Li, Z.; Fang, J.; Wei, X.; Wei, W.; Cao, J.; Wei, Y.; Xie, Z. Bulk and Active Sediment Prokaryotic Communities in the Mariana and Mussau Trenches. Front. Microbiol. 2020, 11, 1521. [Google Scholar] [CrossRef]
- Guan, H.; Chen, L.; Luo, M.; Liu, L.; Mao, S.; Ge, H.; Zhang, M.; Fang, J.; Chen, D. Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench. Geosci. Front. 2019, 10, 351–360. [Google Scholar] [CrossRef]
- Mausz, M.A.; Chen, Y. Microbiology and Ecology of Methylated Amine Metabolism in Marine Ecosystems. Curr. Issues Mol. Biol. 2019, 33, 133–148. [Google Scholar] [CrossRef]
- Birch, H.; Schmidt, D.N.; Coxall, H.K.; Kroon, D.; Ridgwell, A. Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity. Proc. R. Soc. B: Biol. Sci. 2021, 288, 20210863. [Google Scholar] [CrossRef]
- Hsieh, S.; Łaska, W.; Uchman, A. Intermittent and temporally variable bioturbation by some terrestrial invertebrates: implications for ichnology. Sci. Nat. 2023, 110, 1–18. [Google Scholar] [CrossRef]
- Cariou, M.; Francois, C.M.; Voisin, J.; Pigneret, M.; Hervant, F.; Volatier, L.; Mermillod-Blondin, F. Effects of bioturbation by tubificid worms on biogeochemical processes, bacterial community structure and diversity in heterotrophic wetland sediments. Sci. Total. Environ. 2021, 795, 148842. [Google Scholar] [CrossRef] [PubMed]
- Fusi, M.; Booth, J.M.; Marasco, R.; Merlino, G.; Garcias-Bonet, N.; Barozzi, A.; Garuglieri, E.; Mbobo, T.; Diele, K.; Duarte, C.M.; et al. Bioturbation Intensity Modifies the Sediment Microbiome and Biochemistry and Supports Plant Growth in an Arid Mangrove System. Microbiol. Spectr. 2022, 10, e0111722. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.K.; Matthiopoulos, J.; Mitchell, S.N.; Ahmed, Z.U.; Al Mamun, B.; Reeve, R. 1980s–2010s: The world's largest mangrove ecosystem is becoming homogeneous. Biol. Conserv. 2019, 236, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Tongununui, P.; Kuriya, Y.; Murata, M.; Sawada, H.; Araki, M.; Nomura, M.; Morioka, K.; Ichie, T.; Ikejima, K.; Adachi, K.; et al. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLOS ONE 2021, 16, e0261654. [Google Scholar] [CrossRef]
- Zilius, M.; Bonaglia, S.; Broman, E.; Chiozzini, V.G.; Samuiloviene, A.; Nascimento, F.J.A.; Cardini, U.; Bartoli, M. N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Booth, J.M.; Fusi, M.; Marasco, R.; Mbobo, T.; Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Goode, K.; Dunphy, B.; Parsons, D. Environmental metabolomics as an ecological indicator: Metabolite profiles in juvenile fish discriminate sites with different nursery habitat qualities. Ecol. Indic. 2020, 115. [Google Scholar] [CrossRef]
- He, N.; Liu, L.; Wei, R.; Sun, K. Heavy Metal Pollution and Potential Ecological Risk Assessment in a Typical Mariculture Area in Western Guangdong. Int. J. Environ. Res. Public Heal. 2021, 18, 11245. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, A.R.M.T.; Ismail, Z.; Ahmed, M.K.; Ali, M.M.; Kabir, M.H.; Ibrahim, K.A.; Al-Qthanin, R.N.; Idris, A.M. Effects of microplastic and heavy metals on coral reefs: A new window for analytical research. Heliyon. 2023; 9(11), e22692.
- Hu, H.; Han, L.; Li, L.; Wang, H.; Xu, T. Soil heavy metal pollution source analysis based on the land use type in Fengdong District of Xi’an, China. Environ. Monit. Assess. 2021, 193, 1–14. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Environ. Biotechnol. Sustain. Fut. 2019;103–125.
- Bisht, V.S.; Negi, D. Microplastics: in aquatic ecosystem: Sources, trophic.
- transfer and implications. Int. J. Fish. Aquat. Stud. 2020;8(3), 227–234.
- Vital, S.; Cardoso, C.; Avio, C.; Pittura, L.; Regoli, F.; Bebianno, M. Do microplastic contaminated seafood consumption pose a potential risk to human health? Mar. Pollut. Bull. 2021, 171, 112769. [Google Scholar] [CrossRef]
- Patterson, J.; Jeyasanta, K.I.; Sathish, N.; Edward, J.P.; Booth, A.M. Microplastic and heavy metal distributions in an Indian coral reef ecosystem. Sci. Total. Environ. 2020, 744, 140706. [Google Scholar] [CrossRef]
- Hu, C.; Shui, B.; Yang, X.; Wang, L.; Dong, J.; Zhang, X. Trophic transfer of heavy metals through aquatic food web in a seagrass ecosystem of Swan Lagoon, China. Sci. Total. Environ. 2021, 762, 143139. [Google Scholar] [CrossRef]
- Yang, S.; Sun, K.; Liu, J.; Wei, N.; Zhao, X. Comparison of Pollution Levels, Biomagnification Capacity, and Risk Assessments of Heavy Metals in Nearshore and Offshore Regions of the South China Sea. Int. J. Environ. Res. Public Heal. 2022, 19, 12248. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; di Montanara, A.C.; Corinaldesi, C.; Dell’aNno, A.; Illuminati, S.; Willis, T.J.; Gambi, C. Bioaccumulation and biomagnification of heavy metals in marine micro-predators. Commun. Biol. 2023, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Taslima, K.; Emran, A.; Rahman, M.S.; Hasan, J.; Ferdous, Z.; Rohani, F. ; Shahjahan Impacts of heavy metals on early development, growth and reproduction of fish – A review. Toxicol. Rep. 2022, 9, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Borah, S.S.; Kalamdhad, A.S. Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecol. Indic. 2021, 122. [Google Scholar] [CrossRef]
- Chernova, E.N.; Lysenko, E.V. The content of metals in organisms of various trophic levels in freshwater and brackish lakes on the coast of the sea of Japan. Environ. Sci. Pollut. Res. 2019, 26, 20428–20438. [Google Scholar] [CrossRef] [PubMed]
- Ramon, D. ; Morick, D; Croot, P., Berzak, R; Scheinin, A.; Tchernov, D., Davidovich, N., Britzi, M. A survey of arsenic, mercury, cadmium, and lead residues in seafood (fish, crustaceans, and cephalopods) from the south-eastern Mediterranean Sea. J Food Sci. 2021 86(3),1153-1161.
- Boldrocchi, G.; Spanu, D.; Mazzoni, M.; Omar, M.; Baneschi, I.; Boschi, C.; Zinzula, L.; Bettinetti, R.; Monticelli, D. Bioaccumulation and biomagnification in elasmobranchs: A concurrent assessment of trophic transfer of trace elements in 12 species from the Indian Ocean. Mar. Pollut. Bull. 2021, 172, 112853. [Google Scholar] [CrossRef]
- Chevrollier, L.-A.; Koski, M.; Søndergaard, J.; Trapp, S.; Aheto, D.W.; Darpaah, G.; Nielsen, T.G. Bioaccumulation of metals in the planktonic food web in the Gulf of Guinea. Mar. Pollut. Bull. 2022, 179, 113662. [Google Scholar] [CrossRef]
- Orata, F.; Sifuna, F. Uptake, bioaccumulation, partitioning of lead (Pb) and cadmium (Cd) in aquatic organisms in contaminated environments. Lead, Mercury and Cadmium in the Aquatic Environment: Worldwide Occurrence, Fate and Toxicity. 2023; 166.
- Bielmyer-Fraser, G.K.; Patel, P.; Capo, T.; Grosell, M. Physiological responses of corals to ocean acidification and copper exposure. Mar. Pollut. Bull. 2018, 133, 781–790. [Google Scholar] [CrossRef]
- Mortada, W.I.; El-Naggar, A.; Mosa, A.; Palansooriya, K.N.; Yousaf, B.; Tang, R.; Wang, S.; Cai, Y.; Chang, S.X. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. Chemosphere 2023, 331, 138804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, M.; Yang, H.; Pian, R.; Wang, J.; Wu, A.-M. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- McAllister, S.M.; Vandzura, R.; Keffer, J.L.; Polson, S.W.; Chan, C.S. Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME J. 2020, 15, 1271–1286. [Google Scholar] [CrossRef] [PubMed]
- Summer, K.; Reichelt-Brushett, A.; Howe, P. Toxicity of manganese to various life stages of selected marine cnidarian species. Ecotoxicol. Environ. Saf. 2019, 167, 83–94. [Google Scholar] [CrossRef]
- Byeon, E.; Kang, H.-M.; Yoon, C.; Lee, J.-S. Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquat. Toxicol. 2021, 237, 105901. [Google Scholar] [CrossRef]
- Si, L.; Branfireun, B.A.; Fierro, J. Chemical Oxidation and Reduction Pathways of Mercury Relevant to Natural Waters: A Review. Water 2022, 14, 1891. [Google Scholar] [CrossRef]
- Slemr, F.; Weigelt, A.; Ebinghaus, R.; Bieser, J.; Brenninkmeijer, C.A.M.; Rauthe-Schöch, A.; Hermann, M.; Martinsson, B.G.; van Velthoven, P.; Bönisch, H.; et al. Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016. Atmospheric Meas. Tech. 2018, 18, 12329–12343. [Google Scholar] [CrossRef]
- Reichelt-Brushett, A.J.; Stone, J.; Howe, P.; Thomas, B.; Clark, M.; Male, Y.; Nanlohy, A.; Butcher, P. Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety. Environ. Res. 2017, 152, 407–418. [Google Scholar] [CrossRef]
- Rudershausen, P.; Cross, F.; Runde, B.; Evans, D.; Cope, W.; Buckel, J. Total mercury, methylmercury, and selenium concentrations in blue marlin Makaira nigricans from a long-term dataset in the western north Atlantic. Sci. Total. Environ. 2022, 858, 159947. [Google Scholar] [CrossRef]
- Córdoba-Tovar, L.; Marrugo-Negrete, J.; Barón, P.R.; Díez, S. Drivers of biomagnification of Hg, As and Se in aquatic food webs: A review. Environ. Res. 2022, 204, 112226. [Google Scholar] [CrossRef]
- Babaei, M.; Tayemeh, M.B.; Jo, M.S.; Yu, I.J.; Johari, S.A. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. Sci. Total. Environ. 2022, 842, 156807. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.B. Heavy Metals in the Marine Environment—An Overview. In: Heavy Metals in Scleractinian Corals. SpringerBriefs in Earth Sciences. 2021; Springer, Cham.
- Lehel, J.; Yaucat-Guendi, R.; Darnay, L.; Palotás, P.; Laczay, P. Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Crit. Rev. Food Sci. Nutr. 2020, 61, 867–888. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.d.A.; Ferrari, R.G.; Kato, L.S.; Hauser-Davis, R.A.; Conte-Junior, C.A. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol. Trace Element Res. 2021, 200, 881–903. [Google Scholar] [CrossRef] [PubMed]
- Ferrarini, A.; Fracasso, A.; Spini, G.; Fornasier, F.; Taskin, E.; Fontanella, M.C.; Beone, G.M.; Amaducci, S.; Puglisi, E. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Front. Microbiol. 2021, 12, 645893. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Zhang, X.; Kong, D.; Chen, Z.; Lin, J.; Wang, C. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing. Environ. Pollut. 2022, 311, 119970. [Google Scholar] [CrossRef]
- Cervantes, P.A.M.; Ziarati, P.; de Frutos Madrazo, P. Bioremediation Encyclopedia of Sustainable Management. Springer. 2023; 1-8.
- Kumar, A.G.; Manisha, D.; Rajan, N.N.; Sujitha, K.; Peter, D.M.; Kirubagaran, R.; Dharani, G. Biodegradation of phenanthrene by piezotolerant Bacillus subtilis EB1 and genomic insights for bioremediation. Mar. Pollut. Bull. 2023, 194, 115151. [Google Scholar] [CrossRef]
- Erguven, G.O.; Tatar, Ş.; Serdar, O.; Yildirim, N.C. Evaluation of the efficiency of chlorpyrifos-ethyl remediation by Methylobacterium radiotolerans and Microbacterium arthrosphaerae using response of some biochemical biomarkers. Environ. Sci. Pollut. Res. 2020, 28, 2871–2879. [Google Scholar] [CrossRef]
- Maity, J.P.; Samal, A.C.; Rajnish, K.; Singha, S.; Sahoo, T.R.; Chakraborty, S.; Bhattacharya, P.; Chakraborty, S.; Sarangi, B.S.; Dey, G.; et al. Furfural removal from water by bioremediation process by indigenous Pseudomonas putida (OSBH3) and Pseudomonas aeruginosa (OSBH4) using novel suphala media: An optimization for field application. Groundw. Sustain. Dev. 2022, 20. [Google Scholar] [CrossRef]
- Zhao, Z.; Oury, B.M.; Xia, L.; Qin, Z.; Pan, X.; Qian, J.; Luo, F.; Wu, Y.; Liu, L.; Wang, W. The ecological response and distribution characteristics of microorganisms and polycyclic aromatic hydrocarbons in a retired coal gas plant post-thermal remediation site. Sci. Total. Environ. 2022, 857. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Rai, A.K.; Sharma, M.; Tripathi, M.; Prasad, R. Microbial biofilms: Recent advances and progress in environmental bioremediation. Sci. Total. Environ. 2022, 824, 153843. [Google Scholar] [CrossRef] [PubMed]
- Shourie, A.; Vijayalakshmi, U. Fungal Diversity and Its Role in Mycoremediation. Geomicrobiol. J. 2022, 39, 426–444. [Google Scholar] [CrossRef]
- Husain, R.; Vikram, N.; Yadav, G.; Kumar, D.; Pandey, S.; Patel, M.; Khan, N.; Hussain, T. Microbial bioremediation of heavy metals by marine bacteria. In Elseviere Books. 2022; pp. 177–203.
- Durairaj, A.; Maruthapandi, M.; Luong, J.H.T.; Perelshtein, I.; Gedanken, A. Enhanced UV Protection, Heavy Metal Detection, and Antibacterial Properties of Biomass-Derived Carbon Dots Coated on Protective Fabrics. ACS Appl. Bio Mater. 2022, 5, 5790–5799. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Ji, X.; Xu, Z.; Ji, X. Transparent cellulose-based bio-hybrid films with enhanced anti-ultraviolet, antioxidant and antibacterial performance. Carbohydr Polym. 2022; 298, 120118.
- El-Gendy, M.M.A.A.; El-Bondkly, A.M.A. Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Braz. J. Microbiol. 2016, 47, 571–586. [Google Scholar] [CrossRef]
- Alabssawy, A.N.; Hashem, A.H. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Arch. Microbiol. 2024, 206, 1–18. [Google Scholar] [CrossRef]
- Huang, D.; Xiao, R.; Du, L.; Zhang, G.; Yin, L.; Deng, R.; Wang, G. Phytoremediation of poly- and perfluoroalkyl substances: A review on aquatic plants, influencing factors, and phytotoxicity. J. Hazard. Mater. 2021, 418, 126314. [Google Scholar] [CrossRef]
- Delgado-González, C.R.; Madariaga-Navarrete, A.; Fernández-Cortés, J.M.; Islas-Pelcastre, M.; Oza, G.; Iqbal, H.M.N.; Sharma, A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. Int. J. Environ. Res. Public Heal. 2021, 18, 5215. [Google Scholar] [CrossRef]
- Abdelaal, M.; Mashaly, I.A.; Srour, D.S.; Dakhil, M.A.; El-Liethy, M.A.; El-Keblawy, A.; El-Barougy, R.F.; Halmy, M.W.A.; El-Sherbeny, G.A. Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt. Biology 2021, 10, 560. [Google Scholar] [CrossRef]
- Haldar, S.; Ghosh, A. Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review. 3 Biotech 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, N.; Singh, A.K.; Gudade, B.A.; Ghimire, D.; Das, S. Aquatic macrophytes for environmental pollution control phytoremediation technology for the Removal of Heavy Metals and Other Contaminants From Soil and Water. Elsevier. 2022, 291–308. [Google Scholar]
- Li, J.; Zheng, B.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.; Yang, H. The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water 2021, 13, 476. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Prospects for manipulation of molecular mechanisms and transgenic approaches in aquatic macrophytes for remediation of toxic metals and metalloids in wastewaters. Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Elsevier; 2019, 395-428.
- Tripathy, P.K.; Mohapatra, M.; Pattnaik, R.; Tarafdar, L.; Panda, S.; Rastogi, G. Macrophyte Diversity and Distribution in Brackish Coastal Lagoons: A Field Survey From Chilika, Odisha. Coastal Ecosystems. Springer; 2022, 325-358.
- Nabuyanda, M.M.; Kelderman, P.; van Bruggen, J.; Irvine, K. Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. And Phragmites mauritianus in three Zambian wetlands. J. Environ. Manag. 2022, 304, 114133. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tran, K.-Q. A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol. Environ. Saf. 2021, 226, 112821. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wang, B.; Zhang, C.; Li, S.; Wen, J.; Lu, G.; Zhu, C.; Zhou, Y. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int. J. Phytoremediation 2018, 20, 839–846. [Google Scholar] [CrossRef]
- Farahat, E.A.; Mahmoud, W.F.; Fahmy, G.M. Seasonal variations of heavy metals in water, sediment, and organs of Vossia cuspidata (Roxb.) Griff. in River Nile ecosystem: implication for phytoremediation. Environ. Sci. Pollut. Res. 2021, 28, 32626–32633. [Google Scholar] [CrossRef]
- Tshithukhe, G.; Motitsoe, S.N.; Hill, M.P. Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. Plants 2021, 10, 2676. [Google Scholar] [CrossRef]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ. Sci. Pollut. Res. 2020, 27, 12138–12151. [Google Scholar] [CrossRef]
- Cicero-Fernández, D.; Peña-Fernández, M.; Expósito-Camargo, J.A.; Antizar-Ladislao, B. Role ofPhragmites australis(common reed) for heavy metals phytoremediation of estuarine sediments. Int. J. Phytoremediation 2015, 18, 575–582. [Google Scholar] [CrossRef]
- Hossain, M.B.; Masum, Z.; Rahman, M.S.; Yu, J.; Noman, A.; Jolly, Y.N.; Begum, B.A.; Paray, B.A.; Arai, T. Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest. Biology 2022, 11, 1144. [Google Scholar] [CrossRef]
- Li, Y. ; Song, Y; Zhang, J.; Wan, Y. Phytoremediation Competence of Composite Heavy-Metal-Contaminated Sediments by Intercropping Myriophyllum spicatum L. with Two Species of Plants. Int J Environ Res Public Health. 2023; 20(4), 3185.
- Mohan, I.; Goria, K.; Dhar, S.; Kothari, R.; Bhau, B.; Pathania, D. Phytoremediation of heavy metals from the biosphere perspective and solutions. Pollutants and Water Management: Resources, Strategies and Scarcity. 2021;16, 95-127.
- Makarova, A.; Nikulina, E.; Avdeenkova, T.; Pishaeva, K. The improved phytoextraction of heavy metals and the growth of Trifolium repens L.: The role of K2HEDP and plant growth regulators alone and in combination. Sustainability. 2021; 13(5), 2432.
- Galal, T.M.; Gharib, F.A. , Ghazi, S.M.; Mansour, K.H. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: A phytoremediation approach. Int J Phytoremediation. 2017; 19(11), 992-999.
- Rosenfeld, C.E.; Chaney, R.L.; Martínez, C.E. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils. Sci. Total. Environ. 2018, 616-617, 279–287. [Google Scholar] [CrossRef]
- Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Wang, R.; Wei, J.; Huang, C.; Xu, P.; Wan, J.; Zhang, C. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresour. Technol. 2018, 253, 64–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).