Submitted:
13 August 2025
Posted:
14 August 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Results and Discussion
Conclusions
Methods
Supplementary Materials
Acknowledgements
References
- Keshavarzi, A.; Ni, K.; Hoek, W.V.D.; Datta, S.; Raychowdhury, A. FerroElectronics for Edge Intelligence. IEEE Micro 2020, 40, 33–48. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, Y.; Tong, L.; Pang, Y.; Xu, J. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing. Advanced Materials 2025, 37, 2400332. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, J.; Qian, J.; Liu, C.; Ma, J.; Nan, C.-W.; Shen, Y. Flexible Robust and High-Density FeRAM from Array of Organic Ferroelectric Nano-Lamellae by Self-Assembly. Advanced Science 2019, 6, 1801931. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Huang, C.-W.; Hsieh, Y.-H.; Chen, J.-Y.; Chang, C.-F.; Chu, Y.-H.; Wu, W.-W. In-situ TEM Observation of Multilevel Storage Behavior in Low Power FeRAM Device. Nano Energy 2017, 34, 103–110. [Google Scholar] [CrossRef]
- Zou, D.; Liu, S.; Zhang, C.; Hong, Y.; Zhang, G.; Yang, Z. Flexible and Translucent PZT films Enhanced by the Compositionally Graded Heterostructure for Human Body Monitoring. Nano Energy 2021, 85, 105984. [Google Scholar] [CrossRef]
- Yue, Z.Y.; Zhang, Z.D.; Wang, Z.J. Enhanced Memristor Performance via Coupling Effect of Oxygen Vacancy and Ferroelectric Polarization. Journal of Materials Science & Technology 2024, 171, 139–146. [Google Scholar]
- Chen, X.; Zhang, X.; Koten, M.A.; Chen, H.; Xiao, Z.; Zhang, L.; Shield, J.E.; Dowben, P.A.; Hong, X. Interfacial Charge Engineering in Ferroelectric-Controlled Mott Transistors. Advanced Materials 2017, 29, 1701385. [Google Scholar] [CrossRef]
- Fong, D.D.; Stephenson, G.B.; Streiffer, S.K.; Eastman, J.A.; Auciello, O.; Fuoss, P.H.; Thompson, C. Ferroelectricity in Ultrathin Perovskite Films. Science 2004, 304, 1650–1653. [Google Scholar] [CrossRef]
- Yang, H.-L.; Wang, B.-M.; Zhu, X.-J.; Shang, J.; Chen, B.; Li, R.-W. Modulation of Physical Properties of Oxide Thin Films by Multiple Fields. Chinese Physics B 2016, 25, 067303. [Google Scholar] [CrossRef]
- Jiang, R.-J.; Cao, Y.; Geng, W.-R.; Zhu, M.-X.; Tang, Y.-L.; Zhu, Y.-L.; Wang, Y.; Gong, F.; Liu, S.-Z.; Chen, Y.-T.; Liu, J.; Liu, N.; Wang, J.-H.; Lv, X.-D.; Chen, S.-J.; Ma, X.-L. Atomic Insight into the Successive Antiferroelectric–Ferroelectric Phase Transition in Antiferroelectric Oxides. Nano Letters 2023, 23, 1522–1529. [Google Scholar] [CrossRef]
- Gong, J.; Du, P.; Li, W.; Yuan, G.; Mao, X.; Luo, L. The Enhancement of Photochromism and Luminescence Modulation Properties of Ferroelectric Ceramics via Chemical and Physical Strategies. Laser & Photonics Reviews 2022, 16, 2200170. [Google Scholar] [CrossRef]
- Lee, J.; Song, M.S.; Jang, W.-S.; Byun, J.; Lee, H.; Park, M.H.; Lee, J.; Kim, Y.-M.; Chae, S.C.; Choi, T. Modulating the Ferroelectricity of Hafnium Zirconium Oxide Ultrathin Films via Interface Engineering to Control the Oxygen Vacancy Distribution. Advanced Materials Interfaces 2022, 9, 2101647. [Google Scholar] [CrossRef]
- Li, D.; Huang, X.; Wu, Q.; Zhang, L.; Lu, Y.; Hong, X. Ferroelectric Domain Control of Nonlinear Light Polarization in MoS2 via PbZr0.2Ti0.8O3 Thin Films and Free-Standing Membranes. Advanced Materials 2023, 35, 2208825. [Google Scholar] [CrossRef]
- Li, D.; Huang, X.; Xiao, Z.; Chen, H.; Zhang, L.; Hao, Y.; Song, J.; Shao, D.-F.; Tsymbal, E.Y.; Lu, Y.; Hong, X. Polar Coupling Enabled Nonlinear Optical Filtering at MoS2/Ferroelectric Heterointerfaces. Nature Communications 2020, 11, 1422. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Wang, D.; Song, W.; Liu, X.; Pang, J.; Geng, D.; Sang, Y.; Liu, H. Microstructure and domain engineering of Lithium Niobate Crystal Films for Integrated Photonic Applications. Light: Science & Applications 2020, 9, 197. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Liu, K.; Guo, Q.; Wang, S.; Li, X. Nonlinear Optical Imaging, Precise Layer Thinning, and Phase Engineering in MoTe2 with Femtosecond Laser. ACS Nano 2020, 14, 11169–11177. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, L.; Zhang, M.; Ji, S.; Xiao, Z.; Gao, C.; Liu, F.; Hu, Z.; Zhou, Y.; Fu, X. Femtosecond Laser Manipulation of Multistage Phase Switching in Two-Dimensional In2Se3 Visualized via an In Situ Transmission Electron Microscope. ACS Nano 2025, 19, 13264–13272. [Google Scholar] [CrossRef]
- Fang, R.; Vorobyev, A.; Guo, C. Direct Visualization of the Complete Evolution of Femtosecond Laser-Induced Surface Structural Dynamics of Metals. Light: Science & Applications 2017, 6, e16256–e16256. [Google Scholar]
- Sugioka, K.; Cheng, Y. Ultrafast Lasers—Reliable Tools for Advanced Materials Processing. Light: Science & Applications 2014, 3, e149–e149. [Google Scholar] [CrossRef]
- Li, D.W.; Zhou, Y.S.; Huang, X.; Jiang, L.; Silvain, J.F.; Lu, Y.F. In Situ Imaging and Control of Layer-by-Layer Femtosecond Laser Thinning of Graphene. Nanoscale 2015, 7, 3651–3659. [Google Scholar] [CrossRef]
- Sugioka, K. Progress in Ultrafast Laser Processing and Future Prospects. Nanophotonics 2017, 6, 393–413. [Google Scholar] [CrossRef]
- Hirayama, Y.; Obara, M. Heat-Affected Zone and Ablation Rate of Copper Ablated with Femtosecond Laser. Journal of Applied Physics 2005, 97. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids. Applied Physics A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Korte, F.; Koch, J.; Chichkov, B.N. Formation of Microbumps and Nanojets on Gold Targets by Femtosecond Laser Pulses. Applied Physics A 2004, 79, 879–881. [Google Scholar] [CrossRef]
- Koch, J.; Korte, F.; Bauer, T.; Fallnich, C.; Ostendorf, A.; Chichkov, B.N. Nanotexturing of Gold Films by Femtosecond Laser-Induced Melt Dynamics. Applied Physics A 2005, 81, 325–328. [Google Scholar] [CrossRef]
- Nakata, Y.; Miyanaga, N.; Okada, T. Effect of Pulse Width and Fluence of Femtosecond Laser on the Size of Nanobump Array. Applied Surface Science 2007, 253, 6555–6557. [Google Scholar] [CrossRef]
- Hu, D.; Lu, Y.; Cao, Y.; Zhang, Y.; Xu, Y.; Li, W.; Gao, F.; Cai, B.; Guan, B.-O.; Qiu, C.-W.; Li, X. Laser-Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. ACS Nano 2018, 12, 9233–9239. [Google Scholar] [CrossRef]
- Chen, X.; Liu, D.; Liu, S.; Mazur, L.M.; Liu, X.; Wei, X.; Xu, Z.; Wang, J.; Sheng, Y.; Wei, Z.; Krolikowski, W. Optical Induction and Erasure of Ferroelectric Domains in Tetragonal PMN-38PT Crystals. Advanced Optical Materials 2022, 10, 2102115. [Google Scholar] [CrossRef]
- Fan, L.; Ran, L.; Zhang, S.; Wu, L.; Wang, T.; Zhao, T.; Wang, Y.; Pan, J.; Song, Q.; Lu, J.; Yao, J.; Wu, H. Femtosecond-Laser-Enabled Geometric Microengineering of PZT Films for Boosted Piezoelectric Response and Rainfall Monitoring Demonstration. ACS Applied Materials & Interfaces 2024, 16, 66718–66726. [Google Scholar]
- Yoshida, M.; Nishibata, I.; Matsuda, T.; Ito, Y.; Sugita, N.; Shiro, A.; Shobu, T.; Arakawa, K.; Hirose, A.; Sano, T. Influence of pulse duration on mechanical properties and dislocation density of dry laser peened aluminum alloy using ultrashort pulsed laser-driven shock wave. Journal of Applied Physics 2022, 132, 075101. [Google Scholar] [CrossRef]
- Lian, Y.; Hua, Y.; Sun, J.; Wang, Q.; Chen, Z.; Wang, F.; Zhang, K.; Lin, G.; Yang, Z.; Zhang, Q.; Jiang, L. Martensitic Transformation in Temporally Shaped Femtosecond Laser Shock Peening 304 Steel. Applied Surface Science 2021, 567, 150855. [Google Scholar] [CrossRef]
- Park, M.; Gu, Y.; Mao, X.; Grigoropoulos, C.P.; Zorba, V. Mechanisms of Ultrafast GHz Burst fs Laser Ablation. Science Advances 2023, 9, eadf6397. [Google Scholar] [CrossRef]
- Lamela, J.; Lifante, G.; Han, T.P.J.; Jaque, F.; García-Navarro, A.; Olivares, J.; Agulló-López, F. Morphology of Ablation Craters Generated by fs Laser Pulses in LiNbO3. Applied Surface Science 2009, 255, 3918–3922. [Google Scholar] [CrossRef]
- Ayeb, M.; Frija, M.; Fathallah, R. Laser Peening: A Review of the Factors, Effects, Applications, Comparison with Shot Peening and State-of-the-Art. Metals and Materials International 2024, 30, 259–283. [Google Scholar] [CrossRef]
- Soyama, H. Comparison Between the Improvements Made to the Fatigue Strength of Stainless Steel by Cavitation Peening, Water Jet Peening, Shot Peening and Laser Peening. Journal of Materials Processing Technology 2019, 269, 65–78. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, H.; Lin, G.; Song, S.; Ji, P. Multiphysics Modeling Femtosecond Laser Ablation of Ti6Al4V with Material Transient Properties. Journal of Alloys and Compounds 2024, 1002, 175360. [Google Scholar] [CrossRef]
- Cheng, C.W. Ablation of Copper by a Scanning Gaussian Beam of a Femtosecond Laser Pulse. The International Journal of Advanced Manufacturing Technology 2017, 92, 151–156. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
