Submitted:
06 August 2025
Posted:
07 August 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Methods
Thematic/Topical Sections
Historical Trajectory of Urban Analytics: From Deduction to Induction
Discussion
Conclusion
References
- Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired (June). https://www.wired.com/2008/06/pb-theory/.
- Anselin, L. (1988) Spatial econometrics: Methods and models. Kluwer Academic.
- Batty, M. 2007). Model cities. Town Planning Review, 78(2), 125–151.
- Batty, M. (2013). The new science of cities. MIT Press.
- Batty, M. (2019). Urban analytics defined. Environment and Planning B: Urban Analytics and City Science, 46(3), 403–405. [CrossRef]
- Boeing, G. (2020a). Online rental housing market representation and the digital reproduction of urban inequality. Environment and Planning A: Economy and Space, 52(2), 449–468. [CrossRef]
- Boeing, G. (2020b). Planarity and street network representation in urban form analysis. Environment and Planning B: Urban Analytics and City Science, 47(5), 855–869. [CrossRef]
- Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., Valensise, C. M., Scala, A., Quattrociocchi, W., & Pammolli, F. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences, 117(27), 15530–15535.
- Brown, A. E. (2019). Prevalence and mechanisms of discrimination: Evidence from the ride-hail and taxi industries. Journal of Planning Education and Research, online first. [CrossRef]
- Castells, M. (2009). The rise of the network society (2nd ed.). Wiley-Blackwell.
- Chapin, Jr., F. S., & Weiss, S. F. (1968). A probabilistic model for residential growth. Transportation Research, 2, 375–390.
- Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. Pion.
- Cranshaw, J., Hong, J. I., & Sadeh, N. (2012). The Livehoods project. In 6th International AAAI Conference on Weblogs and Social Media (pp. 58–65). Dublin, Ireland.
- Crooks, A., Malleson, N., Manley, E., & Heppenstall, A. (2019). Agent-based modelling and geographical information systems. Sage.
- de la Barra, T. (1989). Integrated land use and transport modelling. Cambridge University Press.
- Dong, L., Ratti, C., & Zheng, S. (2019). Predicting neighborhoods’ socioeconomic attributes using restaurant data. Proceedings of the National Academy of Sciences, 116(31), 15447–15452.
- Fricker, M. (2007). Epistemic injustice: The power and the ethics of knowing. Oxford University Press.
- Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E. L., & Fei-Fei, L. (2017). Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proceedings of the National Academy of Sciences, 114(50), 13108–13113.
- Gilliom, J. (2001). Overseers of the poor. University of Chicago Press.
- Gorjian, M. (2024). A deep learning-based methodology to re-construct optimized re-structured mesh from architectural presentations (Doctoral dissertation, Texas A&M University). Texas A&M University. https://oaktrust.library.tamu.edu/items/0efc414a-f1a9-4ec3-bd19-f99d2a6e3392.
- Gorjian, M. (2025). Green gentrification and community health in urban landscape: A scoping review of urban greening’s social impacts (Version 1) [Preprint]. Research Square. [CrossRef]
- Gorjian, M. (2025). Green schoolyard investments and urban equity: A systematic review of economic and social impacts using spatial-statistical methods [Preprint]. Research Square. [CrossRef]
- Gorjian, M. (2025). Green schoolyard investments influence local-level economic and equity outcomes through spatial-statistical modeling and geospatial analysis in urban contexts. arXiv. [CrossRef]
- Gorjian, M. (2025). Schoolyard greening, child health, and neighborhood change: A comparative study of urban U.S. cities (arXiv:2507.08899) [Preprint]. arXiv. [CrossRef]
- Gorjian, M. (2025). The impact of greening schoolyards on surrounding residential property values: A systematic review (Version 1) [Preprint]. Research Square. [CrossRef]
- Gorjian, M. (2025, July 10). Greening schoolyards and the spatial distribution of property values in Denver, Colorado [Preprint]. arXiv. [CrossRef]
- Gorjian, M. (2025, July 11). The impact of greening schoolyards on residential property values [Working paper]. SSRN. [CrossRef]
- Gorjian, M. (2025, July 15). Analyzing the relationship between urban greening and gentrification: Empirical findings from Denver, Colorado. SSRN. [CrossRef]
- Gorjian, M. (2025, July 26). Greening schoolyards and urban property values: A systematic review of geospatial and statistical evidence [Preprint]. arXiv. [CrossRef]
- Gorjian, M. (2025, July 29). Urban schoolyard greening: A systematic review of child health and neighborhood change [Preprint]. Research Square. [CrossRef]
- Gorjian, M., & Quek, F. (2024). Enhancing consistency in sensible mixed reality systems: A calibration approach integrating haptic and tracking systems [Preprint]. EasyChair. https://easychair.org/publications/preprint/KVSZ.
- Gorjian, M., Caffey, S. M., & Luhan, G. A. (2024). Exploring architectural design 3D reconstruction approaches through deep learning methods: A comprehensive survey. Athens Journal of Sciences, 11(2), 1–29. https://www.athensjournals.gr/sciences/2024-6026-AJS-Gorjian-02.pdf.
- Gorjian, M., Caffey, S. M., & Luhan, G. A. (2025). Analysis of design algorithms and fabrication of a graph-based double-curvature structure with planar hexagonal panels. arXiv. [CrossRef]
- Gorjian, M., Caffey, S. M., & Luhan, G. A. (2025). Exploring architectural design 3D reconstruction approaches through deep learning methods: A comprehensive survey. Athens Journal of Sciences, 12, 1–29.
- Gorjian, M., Luhan, G. A., & Caffey, S. M. (2025). Analysis of design algorithms and fabrication of a graph-based double-curvature structure with planar hexagonal panels. arXiv preprint arXiv:2507.16171. [CrossRef]
- Hagerstrand, T. (1968). Innovation diffusion as a spatial process. University of Chicago Press.
- Hollander, J. B., Graves, E., Renski, H., Foster-Karim, C., Wiley, A., & Das, D. (2016). Urban social listening. Springer.
- Isard, W. (1956). Location and space-economy. MIT Press.
- Jiang, B., & Claramunt, C. (2002). Integration of space syntax into GIS: New perspectives for urban morphology. Transactions in GIS, 6(3), 295–309. [CrossRef]
- Jiang, S., Yang, Y., Gupta, S., Veneziano, D., Athavale, S., & González, M. C. (2016). The TimeGeo modeling framework for urban mobility without travel surveys. Proceedings of the National Academy of Sciences, 113(37), 5370–5378.
- Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big data: Issues and challenges moving forward. In 46th Hawaii International Conference on System Sciences (pp. 995–1004). IEEE.
- Kang, W., Oshan, T., Wolf, L. J., Boeing, G., Frias-Martinez, V., Gao, S., Poorthuis, A., & Xu, W. (2019). A roundtable discussion: Defining urban data science. Environment and Planning B: Urban Analytics and City Science, 46(9), 1756–1768. [CrossRef]
- Kontokosta, C. E. (2018). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, online first. [CrossRef]
- Kretzschmar, M. E., Rozhnova, G., Bootsma, M. C. J., van Boven, M., van de Wijgert, J. H. H. M., & Bonten, M. J. M. (2020). Impact of delays on effectiveness of contact tracing strategies for COVID-19: A modelling study. The Lancet Public Health, 5(8), e452–e459. [CrossRef]
- Li, X., Zhang, C., Li, W., Ricard, R., Meng, Q., & Zhang, W. (2015). Assessing street-level urban greenery using Google Street View and a modified green view index. Urban Forestry & Urban Greening, 14(3), 675–685.
- Moeckel, R. (2018). Integrated transportation and land use models. National Academies of Sciences, Engineering, and Medicine. The National Academies Press. [CrossRef]
- Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.
- Naik, N., Kominers, S. D., Raskar, R., Glaeser, E. L., & Hidalgo, C. A. (2017). Computer vision uncovers predictors of physical urban change. Proceedings of the National Academy of Sciences, 114(29), 7571–7576. [CrossRef]
- Nissenbaum, H. (2004). Privacy as contextual integrity. Washington Law Review, 79(1), 119–157.
- Noble, S. (2018). Algorithms of oppression. NYU Press.
- Nyhan, M., Grauwin, S., Britter, R., Misstear, B., McNabola, A., Laden, F., ... & Ratti, C. (2016). Exposure Track: The impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution. Environmental Science & Technology, 50(17), 9671–9681.
- Offenhuber, D. (2014). Infrastructure legibility: A comparative analysis of open311-based citizen feedback systems. Cambridge Journal of Regions, Economy and Society, 8(1), 93–112.
- Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., Letouzé, E., Salah, A. A., Benjamins, R., Cattuto, C., & Colizza, V. (2020). Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances, 6(23).
- Orcutt, G. (1957). A new type of socio-economic system. Review of Economics and Statistics, 39(2), 116–123.
- Pentland, A. (2014). Social physics. Penguin Books.
- Raina, A. S., Mone, V., Gorjian, M., Quek, F., Sueda, S., & Krishnamurthy, V. R. (2024). Blended physical-digital kinesthetic feedback for mixed reality-based conceptual design-in-context. In Proceedings of the 50th Graphics Interface Conference (Article 6, pp. 1–16). ACM. [CrossRef]
- Saiz, A., Salazar, A., & Bernard, J. (2018). Crowdsourcing architectural beauty: Online photo frequency predicts building aesthetic ratings. PloS one, 13(7), e0194369.
- Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., & Ratti, C. (2014). Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences, 111(37), 13290–13294.
- Schweitzer, L. (2014). Planning and social media: A case study of public transit and stigma on Twitter. Journal of the American Planning Association, 80(3), 218–238. [CrossRef]
- Schweitzer, L., & Afzalan, N. (2017). 09 F9 11 02 9D 74 E3 5B D8 41 56 C5 63 56 88 C0: Four reasons why AICP needs an open data ethic. Journal of the American Planning Association, 83(2), 161–167. [CrossRef]
- Stewart, J. Q. (1941). An inverse distance variation for certain social influences. Science, 93(2404), 89–90.
- Tobler, W. (1975). Linear operators applied to areal data. In J. Davis & M. McCullaugh (Eds.), Display and analysis of spatial data (pp. 14–37). John Wiley.
- Viggiano, C., Weisbrod, G., Jiang, S., Homstad, E., Chan, M., & Nural, S. (2020). Data sharing guidance for public transit agencies – Now and in the future. The National Academies Press.
- Voorhees, A. M. (1955). A general theory of traffic movement. 1955 Proceedings. Institute of Traffic Engineers. New Haven, CT.
- Waddell, P. (2002). UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Journal of the American Planning Association, 68(3), 297–314. [CrossRef]
- Waddell, P. (2011). Integrated land use and transportation planning and modelling: Addressing challenges in research and practice. Transport Reviews, 31(2), 209–229. [CrossRef]
- Wang, Q., Phillips, N. E., Small, M. L., & Sampson, R. J. (2018). Urban mobility and neighborhood isolation in America’s 50 largest cities. Proceedings of the National Academy of Sciences, 115(30), 7735–7740. [CrossRef]
- Williams, S., Xu, W., Tan, S. B., Foster, M. J., & Chen, C. (2019). Ghost cities of China: Identifying urban vacancy through social media data. Cities, 94, 275–285.
- Xu, Y., Jiang, S., Li, R., Zhang, J., Zhao, J., Abbar, S., & González, M. C. (2019). Unraveling environmental justice in ambient PM2.5 exposure in Beijing. Computers, Environment and Urban Systems, 75, 12–21. [CrossRef]
- Young, M. (2017). Technological innovation in public organizations (Doctoral dissertation). University of Southern California.
- Zheng, S., Wang, J., Sun, C., Zhang, X., & Kahn, M. E. (2019). Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nature Human Behaviour, 3, 237–243. [CrossRef]
- Zhou, Y., Xu, R., Hu, D., Yue, Y., Li, Q., & Xia, J. (2020). Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: A modelling study using mobile phone data. The Lancet Digital Health, 2(8), e417–e424.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
