Submitted:
31 July 2025
Posted:
31 July 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
- (1)
- The publication must be a peer-reviewed journal article (including original research, short communications, or data papers);
- (2)
- The study must include at least one country within the PICTs;
- (3)
- The article must be written in English.
3. Results and Discussions
- (i)
- Quantitative gap – There is a limited volume of published research on FGR in the region, reflecting an overall scarcity of scholarly attention.
- (ii)
- Geographic gap – Existing studies are unevenly distributed across PICTs, with certain countries and subregions significantly underrepresented in the literature.
- (iii)
- Temporal gap – Few studies have focussed on long-term monitoring of FGR, highlighting the need for sustained research efforts to infom comprehensive conservation and management strategies.
3.1. Bibliometric Insights into FGR Research in PICTs
3.2. Geographical Representation of FGR Studies
3.3. Temporal Gap
4. Conclusions
Funding
Abbreviations
| FGR | Forest Genetic Resources |
| ACIAR | Australian Centre for International Agricultural Research |
| CePaCT | Centre for the Pacific Crops and Trees |
| CSIRO | Commonwealth Scientific and Industrial Research Organisation |
| DNA | Deoxyribonucleic acid |
| FAO | UN’s Food and Agriculture Organization |
| ETS | E26 transformation-specific family of transcription factors |
| IPBES | Intergovernmental Platform on Biodiversity and Ecosystem Services |
| ISSR | Inter-simple sequence repeat |
| ITS | Internal Transcribed Spacer |
| nSSR | Nuclear microsatellite |
| PICTs | Pacific Island Countries and Territories |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
| RAPD | Random Amplified Polymorphic DNA |
| RPB2 | RNA polymerase II subunit B |
| SPRIG | South Pacific Regional Initiative on Forest genetic resources |
| SSR | Simple Sequence Repeat |
| WoS | ISI Web of Science |
References
- Mittermeier, R.A.; Gill, P.R.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Mittermeier, C.G.; Lamoreux, J.; Fonseca, G. Hotspots revisited: earths biologically richest and most endangered terrestrial ecoregions. Cemex 2004, 392. [Google Scholar]
- Keppel, G.; Lowe, A.J.; Possingham, H.P. Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. J. Biogeogr. 2009, 36, 1035–1054. [Google Scholar] [CrossRef]
- Kier, G.; Kreft, H.; Lee, T.M.; Jetz, W.; Ibisch, P.L.; Nowicki, C.; Mutke, J.; Barthlott, W. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 2009, 106, 9322–9327. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J. 2023. Island biogeography: Geo-environmental dynamics, ecology, evolution, human impact, and conservation: Oxford University Press.
- Frankham, R. Inbreeding and extinction: island populations. Conserv. Biol. 1998, 12, 665–675. [Google Scholar] [CrossRef]
- Mueller-Dombois, D. Pacific Island forests: successionally impoverished and now threatened to be overgrown by aliens? Pacific Science 2008, 62, 303–308. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Watson, J.E.; Lundquist, C.J.; Venter, O.; Hughes, L.; Johnston, E.; Atherton, J.; Gawel, M.; Keith, D.A.; Mackey, B.G. Major conservation policy issues for biodiversity in Oceania. Conserv. Biol. 2009, 23, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Woinarski, J. Biodiversity conservation in tropical forest landscapes of Oceania. Biol. Conserv. 2010, 143, 2385–2394. [Google Scholar] [CrossRef]
- Steadman, D.W. Extinction and biogeography of tropical Pacific birds. U: Chicago, USA, 2006. [Google Scholar]
- Barnett, J.; Campbell, J. 2010. Climate change and small island states: power, knowledge and the South Pacific. London: Earthscan Ltd.; 03/31. 1-218 p.
- Schwarz, A.-M.; Béné, C.; Bennett, G.; Boso, D.; Hilly, Z.; Paul, C.; Posala, R.; Sibiti, S.; Andrew, N. Vulnerability and resilience of remote rural communities to shocks and global changes: empirical analysis from Solomon Islands. Glob. Environ. Change 2011, 21, 1128–1140. [Google Scholar] [CrossRef]
- Schmidtling, R.; Robison, T.; McKeand, S.; Rousseau, R.; Allen, H.; Goldfarb, B. 2004. The role of genetics and tree improvement in southern forest productivity. Gen Tech Rep SRS. 75. Port Royal Rd., Springfield: National Technical Information Service. p. 97-108.
- Thaman, R.R. A matter of survival: Pacific Islands vital biodiversity, agricultural biodiversity and ethno-biodiversity heritage. Pacific Ecologist 2008, 16, 55–62. [Google Scholar]
- Thomson, L.; Doran, J.; Clarke, B. <italic>Trees for life in Oceania: conservation and utilisation of genetic diversity.</italic> 2018.
- Banack, S.A.; Cox, P.A. Ethnobotany of ocean-going canoes in Lau, Fiji. Econ. Bot. 1987, 41, 148–162. [Google Scholar] [CrossRef]
- SPREP 2007. Forest and tree genetic resource conservation, management and sustainable use in Pacific Island Countries and Territories SPREP PROE - Virtual Library: Secretariat of the Pacific Regional Environment Programme; 2007.
- Schmitt, C.B.; Burgess, N.D.; Coad, L.; Belokurov, A.; Besançon, C.; Boisrobert, L.; Campbell, A.; Fish, L.; Gliddon, D.; Humphries, K. Global analysis of the protection status of the world’s forests. Biol. Conserv. 2009, 142, 2122–2130. [Google Scholar] [CrossRef]
- Pillay, R.; Venter, M.; Aragon-Osejo, J.; González-Del-Pliego, P.; Hansen AJ, Watson JE, Venter, O. Tropical forests are home to over half of the world’s vertebrate species. Front Ecol Env. 2022, 20, 10–15. [Google Scholar] [CrossRef]
- Bauer, J.; Hopa, D.; Wapot, S. The contested forests: searching for new visions for forestry in Melanesia. Port Villa, Vanuatu: Melanesian Spearhead Group (MSG) Secretariat through the Pacific Integration Technical Assistance Project (PITAP) which is funded by the European Union under the 10th European Development Fund (EDF) 2016, 2016.
- OECD 2012. OECD environmental outlook to 2050: the consequences of inaction. Kitamori, K., Manders, T., Dellink, R., Tabeau, A., editors: OECD (Organisation for Economic Co-operation and Development) Publishing.
- Corlew, L.K. The cultural impacts of climate change: sense of place and sense of community in Tuvalu, a country threatened by sea level rise. Honolulu, Hawaii: University of Hawaii. 2012. [Google Scholar]
- André, T.; Lemes, M.R.; Grogan, J.; Gribel, R. Post-logging loss of genetic diversity in a mahogany (Swietenia macrophylla King, Meliaceae) population in Brazilian Amazonia. For. Ecol. Manag. 2008, 255, 340–345. [Google Scholar] [CrossRef]
- de Lacerda, A.E.B.; Roberta Nimmo, E.; Sebbenn, A.M. Modeling the long-term impacts of logging on genetic diversity and demography of Hymenaea courbaril. For. Sci. 2013, 59, 15–26. [Google Scholar] [CrossRef]
- Ledig, F.T. Conservation strategies for forest gene resources. For. Ecol. Manag. 1986, 14, 77–90. [Google Scholar] [CrossRef]
- Padolina, C. An overview of forest genetic resource conservation and management in the Pacific. Acta Hortic 2007, 757, 37–42. [Google Scholar] [CrossRef]
- Harper, J.L.; Hawksworth, D.L. 1994. Biodiversity: measurement and estimation. Preface. The Royal Society London. p. 5-12.
- BLAG - expert group. 2004. Concept on the genetic monitoring for forest tree species in the Federal Republic of Germany. 2004.
- Aravanopoulos, F.; Tollefsrud, M.; Graudal, L.; Koskela Kätzel, R.; Soto Nagy, L.; Pilipovic, A.; Zhelev, P.; Bozic, G.; Bozzano, M. 2015. Development of genetic monitoring methods for genetic conservation units of forest trees in Europe. Bioversity International, Rome, Italy: European Forest Genetic Resources Programme (EUFORGEN).
- Luoma-Aho, T. Forest genetic resources conservation and management. Kepong, Kuala Lumpur, Malaysia: Bioversity International 2004, 2004.
- Westergren, M.; Fussi, B.; Konnert, M.; Aravanopoulos, F.; Kraigher, H.; editors. LIFEGENMON-LIFE for European forest genetic monitoring system: a LIFE+ fund for development of a system for forest genetic monitoring. XIV World Forestry Congress; 2015; Durban, South Africa.
- Newton, P.; Castle, S.; Kinzer, A.; Miller, D.; Oldekop, J.; Linhares-Juvenal, T.; Pina, L.; Madrid, M.; de Lamo Rodriguez, J. The number of forest-and tree-proximate people: a new methodology and global estimates. Rome: Food and agriculture organization of the United Nations. 2022. [Google Scholar]
- Taylor, M.; McGregor, A.; Dawson, B. Vulnerability of Pacific Island agriculture and forestry to climate change. Noumea, French Calendonia: Pacific Community. 2016. [Google Scholar]
- Namkoong, G.; Boyle, T.; Gregorius, H.-R.; Joly, H.; Savolainen, O.; Ratnam, W.; Young, A. Testing criteria and indicators for assessing the sustainability of forest management: genetic criteria and indicators: CIFOR Bogor. 1996. [Google Scholar]
- Namkoong, G.; Boyle, T. ; El-Kassaby YA, Palmberg-Lerche C, Eriksson G, Gregorius H, Joly H, Kremer A, Savolainen O, Wickneswari, R. Criteria and indicators for sustainable forest management: assessment and monitoring of genetic variation. Rome, Italy: Forestry Department (working paper), Food and Agriculture Organization of the United Nations 2002, 2002.
- Munim, Z.H.; Dushenko, M.; Jimenez, V.J.; Shakil, M.H.; Imset, M. Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions. Marit. Policy Manag. 2020, 47, 577–597. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Olisah, C.; Adams, J.B. Analysing 70 years of research output on South African estuaries using bibliometric indicators. Estuarine, Coastal and Shelf Science 2021, 252, 107285. [Google Scholar] [CrossRef]
- FAO 2014. The state of the World’s forest genetic resources: Commission on genetic resources for food and agriculture food and agriculture organization of the United Nations, Rome.
- Lefevre, F.; Koskela, J.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C.; Schüler, S.; Bozzano, M.; Alizoti, P.; Bakys, R. Dynamic conservation of forest genetic resources in 33 European countries. Conserv. Biol. 2013, 27, 373–384. [Google Scholar] [CrossRef]
- Jalonen, R.; Choo, K.; Hong, L.; Sim, H. 2009. Forest genetic resources conservation and management: status in seven South and Southeast Asian countries. Malaysia: FRIM, Bioversity International and APAFRI.
- Uribe-Toril, J.; Ruiz-Real, J.L.; Haba-Osca, J.; de Pablo Valenciano, J. Forests’ first decade: A bibliometric analysis overview. Forests 2019, 10, 72. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A. Conservation and monitoring of tree genetic resources in temperate forests. Current Forestry Reports 2016, 2, 119–129. [Google Scholar] [CrossRef]
- Jupiter, S.; Mangubhai, S.; Kingsford, R.T. Conservation of biodiversity in the Pacific Islands of Oceania: challenges and opportunities. Pac. Conserv. Biol. 2014, 20, 206–220. [Google Scholar] [CrossRef]
- Duangjai, S.; Samuel, R.; Munzinger, J.; Forest, F.; Wallnöfer, B.; Barfuss, M.H.; Fischer, G.; Chase, M.W. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Mol. Phylogenetics Evol. 2009, 52, 602–620. [Google Scholar] [CrossRef]
- Keppel, G.; Lee, S.-W.; Hodgskiss, P. Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A. Br. (Cycadaceae). J. Hered. 2002, 93, 133–139. [Google Scholar] [CrossRef]
- Pouli, T.; Alatimu, T.; Thomson, L. Conserving the Pacific Island’s unique trees: Terminalia richii and Manilkara samoensis in Samoa. Int. For. Rev. 2002, 4, 286–291. [Google Scholar] [CrossRef]
- Dowe, J.L.; Benzie, J.; Ballment, E. Ecology and genetics of Carpoxylon macrospermum H. Wendl. & Drude (Arecaceae), an endangered palm from Vanuatu. Biological Conservation 1997, 79, 205–216. [Google Scholar] [CrossRef]
- Bottin, L.; Tassin, J.; Nasi, R.; Bouvet, J.-M. Molecular, quantitative and abiotic variables for the delineation of evolutionary significant units: case of sandalwood (Santalum austrocaledonicum Vieillard) in New Caledonia. Conservation genetics 2007, 8, 99–109. [Google Scholar] [CrossRef]
- Kettle, C.J.; Ennos, R.A.; Jaffré; T; Gardner, M. ; Hollingsworth, P.M. Cryptic genetic bottlenecks during restoration of an endangered tropical conifer. Biol. Conserv. 2008, 141, 1953–1961. [Google Scholar] [CrossRef]
- Bolatolu, W.; Clarke, B.; Likiafu, H.; Mateboto, J.; Thomson, L. 2022. Domestication and breeding of sandalwood in Fiji and Tonga. CABI Databases: Australian Centre for International Agricultural Research. p. 38.
- Sheely, D.L.; Meagher, T.R. Genetic diversity in Micronesian island populations of the tropical tree Campnosperma brevipetiolata (Anacardiaceae). American Journal of Botany 1996, 83, 1571–1579. [Google Scholar] [CrossRef]
- Swenson, U.; Munzinger, J.; Nylinder, S.; Gâteblé,, G. The largest endemic genus in New Caledonia grows: three new species of Pycnandra (Sapotaceae) restricted to ultramafic substrate with updated subgeneric keys. Aust. Syst. Bot. 2021, 34, 510–525. [Google Scholar] [CrossRef]
- Gomez, C.; Batti, A.; Le Pierrès, D.; Campa, C.; Hamon, S.; De Kochko, A.; Hamon, P.; Huynh, F.; Despinoy, M.; Poncet, V. Favourable habitats for Coffea inter-specific hybridization in central New Caledonia: combined genetic and spatial analyses. J. Appl. Ecol. 2010, 47, 85–95. [Google Scholar] [CrossRef]
- Verhaegen, D.; Assoumane, A.; Serret, J.; Noe, S.; Favreau, B.; Vaillant, A.; Gâteblé, G.; Pain, A.; Papineau, C.; Maggia, L. Structure and genetic diversity of Ixora margaretae an endangered species: a baseline study for conservation and restoration of natural dry forest of New Caledonia. Tree Genet. Genomes 2013, 9, 511–524. [Google Scholar] [CrossRef]
- Segar, S.T.; Volf, M.; Zima Jnr, J.; Isua, B.; Sisol, M.; Sam, L.; Sam, K.; Souto-Vilarós, D.; Novotny, V. Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean Ficus. J. Evol. Biol. 2017, 30, 512–523. [Google Scholar] [CrossRef]
- Wang, C.; Lan, J.; Wang, J.; He, W.; Lu, W.; Lin, Y.; Luo, J. Population structure and genetic diversity in Eucalyptus pellita based on SNP markers. Front. Plant. Sci. 2023, 14, 1278427. [Google Scholar] [CrossRef]
- Le Roux, J.J.; Wieczorek, A.M.; Meyer, J.Y. Genetic diversity and structure of the invasive tree Miconia calvescens in Pacific islands. Divers. Distrib. 2008, 14, 935–948. [Google Scholar] [CrossRef]
- Johnson, M.A. Phylogenetic and functional trait-based community assembly within Pacific Cyrtandra (Gesneriaceae): Evidence for clustering at multiple spatial scales. Ecol. Evol. 2023, 13, e10048. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, Y.; Tsuda, Y.; Nazre, M.; Wee, A.K.S.; Takayama, K.; Yamamoto, T.; Yllano, O.; Salmo, S.; Sungkaew, S.; Adjie, B.; Ardli, E.; Suleiman, M.; Tung, N.; Soe, K.; Kandasamy, K.; Asakawa, T.; Watano, Y.; Baba, S.; Kajita, T. Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum J. Koenig across the Indo-West Pacific Region. Forests 2017, 8, 480. [Google Scholar]
- SPC 2012. Regional workshop on Forest Genetic Resources in the Pacific Suva, Fiji Islands: Secretariat of the Pacific Community; 2012.
- Gamoga, G.; Turia, R.; Abe, H.; Haraguchi, M.; Iuda, O. The forest extent in 2015 and the drivers of forest change between 2000 and 2015 in Papua New Guinea. Case studies in the environment 2021, 5. [Google Scholar] [CrossRef]
- Ward, M.; Ashman, K.; Lindenmayer, D.; Legge, S.; Kindler, G.; Cadman, T.; Fletcher, R.; Whiterod, N.; Lintermans, M.; Zylstra, P.; Stewart, R.; Thomas, H.; Blanch, S.; Watson, J.E.M. The impacts of contemporary logging after 250 years of deforestation and degradation on forest-dependent threatened species. bioRxiv bioRxiv:2023.02.22.529603. 2023. [Google Scholar] [CrossRef]
- Laurance, W.F. Reflections on the tropical deforestation crisis. Biological conservation 1999, 91, 109–117. [Google Scholar] [CrossRef]
- Boon, J.M. A socio-economic analysis of mangrove degradation in Samoa. Geographical review of Japan, Series B 2001, 74, 159–186. [Google Scholar] [CrossRef]
- Banks, G. Mining and the environment in Melanesia: contemporary debates reviewed. The contemporary pacific 2002, 39–67. [Google Scholar] [CrossRef]
- Feary, A. 2011. Restoring the soils of Nauru: plants as tools for ecological recovery.: Open Access Te Herenga Waka-Victoria University of Wellington.
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Matenga, T.F.L.; Zulu, J.M.; Corbin, J.H.; Mweemba, O. Dismantling historical power inequality through authentic health research collaboration: Southern partners’ aspirations. Glob. Public Health 2021, 16, 48–59. [Google Scholar] [CrossRef]
- Nabobo-Baba, U. Decolonising framings in Pacific research: indigenous Fijian vanua research framework as an organic response. Altern. : Int. J. Indig. Peoples 2008, 4, 140–154. [Google Scholar] [CrossRef]
- Keppel, G.; Morrison, C.; Watling, D.; Tuiwawa, M.V.; Rounds, I.A. Conservation in tropical Pacific Island countries: why most current approaches are failing. Conserv. Lett. 2012, 5, 256–265. [Google Scholar] [CrossRef]
- Johansson-Fua, S. 2023. Kakala research framework. Varieties of qualitative research methods: selected contextual perspectives: Springer. p. 275-80.
- Thorsen, B.J.; Kjær, E.D. 2007. Forest genetic diversity and climate change: economic considerations. Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe Bioversity International, Rome, Italy:69-84.


| PICTs | FGR studied | Habitat | Results | Reference |
| Fiji |
Cycas seemannii Santulum yasi |
Native forests Native forests |
Starch-gel electrophoresis revealed low intra- population diversity and high inter- population differentiation Despite low diversity in remnant stands, the species retains substantial genetic variation |
[45] [50] |
| Micronesia | Campnosperma brevipetiolata | Native forests | Enzyme assay protocols revealed a west to east decline in genetic variation across the Indo-Malayan source region | [51] |
| New Caledonia |
Diospros spp. Santalum austrocaledonicum Pycnandra spp. Coffea spp. Araucaria nemorosa |
Native forests Native forests Native forests Plantations Plantation forests |
Genetic diversity in Diospyros stems from gradual accumulation and rapid radiations into four lineages Chloroplast microsatellite analyses revealed overall heterozygosity, with variation among islands Three new species were described using nuclear DNA data from ETS, ITS, and RPB2 regions Inter-specific hybridization was detected, with one population showing high genetic diversity based on 26 microsatellites markers using multi-locus approach Nuclear microsatellite (nSSR) analysis revealed genetic bottle neck and elevated inbreeding in nursery stock compared to seedlings and adult populations |
[44] [48] [52] [53] [49] |
| Papua New Guinea |
Ixora margaretae Ficus spp. Eucalyptus pellita |
Native forests Native forests Plantation forests |
Assisted regeneration with controlled variability will be critical to conserving species biodiversity, as indicated by SSR fingerprinting Restricted elevation ranges in multiple Ficus species constrain gene flow SNP analysis indicates Queensland as the origin of E. pellita, with high genetic diversity |
[54] [55] [56] |
| Samoa | Terminalia richii and Manilkara samoensis | Native forests | Complimentary in situ and ex situ conservation strategies are essential for the species | [46] |
| Vanuatu | Carpoxylum macrospermum | Native forests | RAPD analysis revealed low genetic variation within the existing population | [47] |
| Hawaiian Islands, Marquesas Islands, Society Islands, and New Caledonia | Miconia calvescens | Tropical islands | Microsatellites and inter-simple sequence repeat (ISSR) markers revealed genetic variation within and among populations | [57] |
| Fiji, Samoa, and Hawaiian Islands | Cyrtandra spp | Native forests | Co-existing Cyrtandra species show closer phylogenetic and phenotypic clustering within island and site communities | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
