Submitted:
21 July 2025
Posted:
22 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Total eDNA Extraction and Sequencing
2.3. Economic Data Collection of Yunnan’s Counties and Districts in the Lixian River Basin
2.4. Bioinformatic Analyses
2.5. Statistics
3. Results
3.1. Species Identification and Composition in the Lixian River
3.2. Fish Diversity and Spatial Distribution Pattern in the Lixian River
3.2.1. Fish Diversity in the Upstream, Midstream and Downstream of the Lixian River
3.2.2. Relationship Between the Spatial Distribution Pattern of Fish and Natural Environmental Factors
3.3. The Impacts of Economic Development Level on the Fish Diversity in the Lixian River
3.3.1. Economic Development and Climate Status of the Upper, Middle and Lower Reaches of the Lixian River
3.3.2. The Relationship Between the Fish Diversity and Economic Development in the Lixian River
3.4. Mechanisms of Effects of Economic Development Level on the Fish Diversity in the Lixian River
4. Discussion
4.1. Changes in the Fish Composition of the Lixian River Basin
4.2. Effects of Climate on the Fish Diversity in the Lixian River
4.3. The Impact of Economic Development on Fish Diversity in the Lixian River
4.4. Pathways Under the Effects of Economical Development on Fish Diversity in the Lixian River
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| eDNA | Environmental deoxyribonucleic acid |
| OTUs | Operational taxonomic units |
| RDA | Redundancy analysis |
| Temp | Water temperature |
| Tmmax | Maximum temperature |
| Tmmin | Minimum temperature |
| DO | Dissolved oxygen |
| SAL | Salinity |
| EC | Electrical conductivity |
| TN | Total nitrogen |
| PERMANOVA | Permutational multivariate analysis of variance |
| PCR | Polymerase chain reaction |
| ASVs | Amplicon sequence variants |
| PCoA | Principal Co-ordinates Analysis |
| CCA | Canonical Correlation Analysis |
| PLS-PM | Partial Least Squares Path Modeling |
References
- Lundberg, J.G.; Kottelat, M.; Smith, G.R.; Melanie, L.J.S.; Gill, A.C. So many fishes, so little time: an overview of recent ichthyological discovery in continental waters. Ann Mo Bot Gard 2000, 87, 26–62. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Erős, T.; Takács, P.; Specziár, A.; Schmera, D.; Sály, P. Effect of landscape context on fish metacommunity structuring in stream networks. Freshw Biol 2017, 62, 215–228. [Google Scholar] [CrossRef]
- He, F.; Bremerich, V.; Zarfl, C.; Geldmann, J.; Langhans, S.D.; David, J.N.W.; Darwall, W.; Tockner, K.; Jähnig, S.C. Freshwater megafauna diversity: patterns, status and threats. Divers Distrib 2018, 24, 1395–1404. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Menegotto, A.; Dambros, C.S.; Netto, S.A. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology 2019, 100, e2721. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D. Pattern and process in the ecological biogeography of european freshwater fish. J Anim Ecol 2006, 75, 734–751. [Google Scholar] [CrossRef] [PubMed]
- Gissi, E.; Schiebinger, L.; Hadly, E.A.; Crowder, L.B.; Santoleri, R.; Micheli, F. Exploring climate-induced sex-based differences in aquatic and terrestrial ecosystems to mitigate biodiversity loss. Nat Commun 2023, 14, 4787. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Chen, Y.; Lek, S.; Li, Z. Large scale patterns in the diversity of lake fish assemblages in china and the effect of environmental factors. Fundam Appl Limnol 2016, 188, 129–145. [Google Scholar] [CrossRef]
- Dias, M.S.; Tedesco, P.A.; Hugueny, B.; Jézéquel, C.; Beauchard, O.; Brosse, S.; Oberdorff, T. Anthropogenic stressors and riverine fish extinctions. Ecol Indic 2017, 79, 37–46. [Google Scholar] [CrossRef]
- Brucet, S.; Pédron, S.; Mehner, T.; Lauridsen, T.L.; Argillier, C.; Winfield, I.J.; Volta, P.; Emmrich, M.; Hesthagen, T.; Holmgren, K.; et al. Fish diversity in european lakes: geographical factors dominate over anthropogenic pressures. Freshw Biol 2013, 58, 1779–1793. [Google Scholar] [CrossRef]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front Ecol Environ 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Soininen, J.; Jamoneau, A.; Rosebery, J.; Passy, S.I. Global patterns and drivers of species and trait composition in diatoms. Glob Ecol Biogeogr 2016, 25, 940–950. [Google Scholar] [CrossRef]
- Limburg, K.E.; Hughes, R.M.; Jackson, D.C.; Czech, B. Human population increase, economic growth, and fish conservation: collision course or savvy stewardship? Fisheries (Bethesda) 2011, 36, 27–35. [Google Scholar] [CrossRef]
- Clausen, R.; York, R. Global biodiversity decline of marine and freshwater fish: a cross-national analysis of economic, demographic, and ecological influences. Soc Sci Res 2008, 37, 1310–1320. [Google Scholar] [CrossRef]
- Guo, C.; Chen, Y.; Gozlan, R.E.; Li, Z.; Mehner, T.; Lek, S.; Paukert, C.P. Biogeographic freshwater fish pattern legacy revealed despite rapid socio-economic changes in china. Fish Fish (Oxf) 2019, 20, 857–869. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental dna (edna) metabarcoding: a systematic review in methods, monitoring, and applications of global edna. Glob Ecol Conserv 2019, 17, e547. [Google Scholar] [CrossRef]
- Tillotson, M.D.; Kelly, R.P.; Duda, J.J.; Hoy, M.; Kralj, J.; Quinn, T.P. Concentrations of environmental dna (edna) reflect spawning salmon abundance at fine spatial and temporal scales. Biol Conserv 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Magnuson, J.J.; BENSON, B.J.; MCLAIN, A.S. Insights on species richness and turnover from long-term ecological research: fishes in north temperate lakes. American Zoologist 1994, 34, 437–451. [Google Scholar] [CrossRef]
- Cai, W.; Ma, Z.; Yang, C.; Wang, L.; Wang, W.; Zhao, G.; Geng, Y.; Yu, D.W. Using edna to detect the distribution and density of invasive crayfish in the honghe-hani rice terrace world heritage site. PLoS One 2017, 12, e177724. [Google Scholar] [CrossRef] [PubMed]
- Davy, C.M.; Kidd, A.G.; Wilson, C.C. Development and validation of environmental dna (edna) markers for detection of freshwater turtles. PLoS One 2015, 10, e130965. [Google Scholar] [CrossRef] [PubMed]
- Foote, A.D.; Thomsen, P.F.; Sveegaard, S.; Wahlberg, M.; Kielgast, J.; Kyhn, L.A.; Salling, A.B.; Galatius, A.; Orlando, L.; Gilbert, M.T.P. Investigating the potential use of environmental dna (edna) for genetic monitoring of marine mammals. PLoS One 2012, 7, e41781. [Google Scholar] [CrossRef] [PubMed]
- Pilliod, D.; Goldberg, C.; Arkle, R.; Waits, L. Estimating occupancy and abundance of stream amphibians using environmental dna from filtered water samples. Can J Fish Aquat Sci 2013, 70, 1123–1130. [Google Scholar] [CrossRef]
- Evans, N.T.; Olds, B.P.; Renshaw, M.A.; Turner, C.R.; Li, Y.; Jerde, C.L.; Mahon, A.R.; Pfrender, M.E.; Lamberti, G.A.; Lodge, D.M. Quantification of mesocosm fish and amphibian species diversity via environmental dna metabarcoding. Mol Ecol Resour 2016, 16, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental dna from water samples. Biol Lett 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Guo, F.; Gao, W.; Cai, Y.; Zhang, Y.; Yang, Z. Environmental dna biomonitoring reveals the interactive effects of dams and nutrient enrichment on aquatic multitrophic communities. Environ Sci Technol 2022, 56, 16952–16963. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pan, X.; Chen, X.; Yang, J. The current status and protection strategies of fish resources in lixian river. Journal of Water Ecology 2010, 31, 54–60. [Google Scholar]
- Yang, Y.; Yang, J.; Pan, X.; Zhou, W.; Yang, M. Fish resource protection in hydropower development of lixian river basin in yunnan province. Zool Res 2011, 32, 188–195. [Google Scholar]
- Deiner, K.; Walser, J.; Mächler, E.; Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental dna. Biol Conserv 2015, 183, 53–63. [Google Scholar] [CrossRef]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental dna:for biodiversity research and monitoring; Oxford University Press, 2018. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author correction: reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nat Biotechnol 2019, 37, 1091. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. Dada2: high-resolution sample inference from illumina amplicon data. Nat Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, Y.; Chen, X.; Shi, Y. Yunnan fish atlas; Yunnan Science and Technology Press: Kunming, 2022. [Google Scholar]
- Zhu, T.; Hou, Y.; He, D.; Ji, Y. Color atlas of pu’er indigenous fish; Yunnan Science and Technology Press: Kunming, 2016. [Google Scholar]
- Zhang, C.; Zhao, Y. Species and distribution of inland fish in china; Science Press: Beijing, 2016. [Google Scholar]
- Balasingham, K.D.; Walter, R.P.; Mandrak, N.E.; Heath, D.D. Environmental dna detection of rare and invasive fish species in two great lakes tributaries. Mol Ecol 2018, 27, 112–127. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: community ecology package. In 2024; Volume.
- Gao, J.; Oouyang, X.; B, C. Molecular and morphometricevidence for the widespread introduction of western mosquitofishgambusia affnis( baird and girard,1853) into freshwaters of ma-inland china. Biolnvasions Records 2017, 3, 281–289. [Google Scholar] [CrossRef]
- R Core Team. R: a language and environment for statistical computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Therneau, T.M.; Atkinson, B.; Riple, B.; Oksanen, J.; De’Ath, G. Mvpart: multivariate partitioning. In 2014; Volume.
- Venables, W.N.; Ripley, B.D. Modern applied statistics with s. In Springer: New York, 2022; Volume.
- Sanchez, G.; Trinchera, L.; Russolillo, G. Plspm: partial least squares path modeling (pls-pm). In 2024; Volume.
- Epskamp, S. Semplot: path diagrams and visual analysis of various sem packages output. In 2022; Volume.
- Wickham, H. Ggplot2: elegant graphics for data analysis. In Springer-Verlag New York: 2016; Volume.
- Hasan, V.; Tamam, M.B. First record of the invasive nile tilapia, oreochromis niloticus (linnaeus, 1758) (perciformes, cichlidae), on bawean island, indonesia. Check List 2019, 15, 225–227. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Vorosmarty, C.I.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: vulnerability from climate change and population growth. Science 2000, 289, 284. [Google Scholar] [CrossRef] [PubMed]
- David, D. Large-scale hydrological changes in tropical asia: prospects for riverine biodiversity. Bioscience 2000, 50, 793–806. [Google Scholar]
- Roy, N.; Sen, R.; Chowdhury, M.A. Consequences of climate change on fish diversity in dekhar haor bangladesh. International Journal of Fisheries and Aquatic Studies 2019, 7, 118–124. [Google Scholar]
- Smalås, A.; Primicerio, R.; Kahilainen, K.K.; Terentyev, P.M.; Kashulin, N.A.; Zubova, E.M.; Amundsen, P.A. Increased importance of cool-water fish at high latitudes emerges from individual-level responses to warming. Ecol Evol 2023, 13, e10185. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O.; Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 2007, 315, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Pinaya, W.; Lobon-Cervia, F.J.; Pita, P.; de Souza, R.B.; Freire, J.; Isaac, V.J. Multispecies fisheries in the lower amazon river and its relationship with the regional and global climate variability. PLoS One 2016, 11, e157050. [Google Scholar] [CrossRef] [PubMed]
- Vehanen, T.; Sutela, T.; Huusko, A. Potential impact of climate change on salmonid smolt ecology. Fishes 2023, 8, 382. [Google Scholar] [CrossRef]
- Fujiwara, M.; Martinez-Andrade, F.; Wells, R.J.D.; Fisher, M.; Pawluk, M.; Livernois, M.C. Climate-related factors cause changes in the diversity of fish and invertebrates in subtropical coast of the gulf of mexico. Commun Biol 2019, 2, 403. [Google Scholar] [CrossRef] [PubMed]
- Alabia, I.D.; García Molinos, J.; Hirata, T.; Mueter, F.J.; David, C.L. Pan-arctic marine biodiversity and species co-occurrence patterns under recent climate. Sci Rep 2023, 13, 4076. [Google Scholar] [CrossRef] [PubMed]
- Siwertsson, A.; Lindström, U.; Aune, M.; Berg, E.; Skardhamar, J.; Varpe, O.; Primicerio, R. Rapid climate change increases diversity and homogenizes composition of coastal fish at high latitudes. Glob Chang Biol 2024, 30, e17273. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.L.; Low, P.J.; Ellis, J.R.; Reynolds, J.D. Climate change and distribution shifts in marine fishes. Science 2005, 308, 1912–1915. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Vander Zanden, M.J.; Magnuson, J.J.; Lyons, J. Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PLoS One 2011, 6, e22906. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.W.; Schaefer, C. The absolute general law of environmental degradation under capitalism. CHASQUI 1992, 21, 77–78. [Google Scholar] [CrossRef]
- He, F.; Thieme, M.; Zarfl, C.; Grill, G.; Lehner, B.; Hogan, Z.; Tockner, K.; Jähnig, S.C. Impacts of loss of free-flowing rivers on global freshwater megafauna. Biol Conserv 2021, 263, 109335. [Google Scholar] [CrossRef]
- Yan, K.; Guo, F.; Kainz, M.J.; Li, F.; Gao, W.; Bunn, S.E.; Zhang, Y. The importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater ecosystems with implications of global change. Biol Rev Camb Philos Soc 2024, 99, 200–218. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Fan, J.; Guo, F.; Carpenter-Bundhoo, L.; Huang, G.; Shi, Y.; Ao, Y.; Wang, J. Assessing the impact of river connectivity on fish biodiversity in the yangtze river basin using a multi-index evaluation framework. Environ Res 2024, 242, 117729. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Kalamees, R.; Püssa, K.; Zobel, K.; Zobel, M. Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in estonia. Appl Veg Sci 2012, 15, 208–218. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres, F. Fishing down marine food webs. Science 1998, 279. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.M.; Arenas, F.; Neto, A.I.; Jenkins, S.R. Effects of fishing and regional species pool on the functional diversity of fish communities. PLoS One 2012, 7, e44297. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Xu, Y.; Chen, J.; Ling, J.; Li, Y.; Huang, L.; Zhou, X.; Zheng, L.; Xie, G. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Res 2017, 124, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Vicente, I.; Fonseca-Alves, C. Impact of introduced nile tilapia (oreochromis niloticus) on non-native aquatic ecosystems. Pakistan journal of biological sciences: PJBS 2013, 16, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kou, C.; Li, Y.; Li, J.; Zhu, S. Fish gut microbiome analysis provides insight into differences in physiology and behavior of invasive nile tilapia and indigenous fish in a large subtropical river in china. Animals (Basel) 2023, 13. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, C.; Buckley, C.; Chyzheuskaya, A.; Green, S.; Howley, P.; Hynes, S.; Upton, V.; Ryan, M. The spatial impact of rural economic change on river water quality. Land use policy 2021, 103, 105322. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, L.; Li, Y.; Zou, G.; Wu, J.; Zheng, J. Using modern coexistence theory to understand the distinct states of phytoplankton communities in a subtropical eutrophic river network. Water Res 2025, 274, 123062. [Google Scholar] [CrossRef]
- Smucker, N.; Becker, M.; Detenbeck, N.; Morrison, A. Using algal metrics and biomass to evaluate multiple ways of defining concentration-based nutrient criteria in streams and their ecological relevance. Ecol Indic 2013, 32, 51–61. [Google Scholar] [CrossRef]
- Heneghan, R.F.; Everett, J.D.; Blanchard, J.L.; Sykes, P.; Richardson, A.J. Climate-driven zooplankton shifts cause large-scale declines in food quality for fish. Nat Clim Chang 2023, 13, 470–477. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Palmer, M.A.; Collins, S.L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 2002, 415, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Hansson, L.; Nicolle, A.; Graneli, W.; Hallgren, P.; Kritzberg, E.; Persson, A.; Björk, J.; Nilsson, A.; Brönmark, C. Food chain length alters community response to global change in aquatic systems. Nat Clim Chang 2012, 3. [Google Scholar] [CrossRef]
- Heneghan, R.; Everett, J.; Blanchard, J.; Richardson, A. Zooplankton are not fish: improving zooplankton realism in size-spectrum models mediates energy transfer in food webs. Front Mar Sci 2016, 3. [Google Scholar] [CrossRef]
- Richardson, A.J.; Schoeman, D.S. Climate impact on plankton ecosystems in the northeast atlantic. Science 2004, 305, 1609–1612. [Google Scholar] [CrossRef] [PubMed]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
