Preprint
Article

This version is not peer-reviewed.

Seesaw Model of Neutrino Mass Estimation with a Dirac Mass of 585 GeV Electroweak Fermion and the Unified Stoney Mass

Submitted:

26 July 2025

Posted:

28 July 2025

You are already at the latest version

Abstract
In this work, we propose a novel approach to estimate neutrino masses using a Dirac seesaw mechanism grounded in our 4G model of final unification. The framework utilizes a Dirac mass of 585 GeV, an assumed electroweak fermion having its existence connected with nuclear structure and the unified Stoney mass of 1.859e-9 kg. Neutrino mass hierarchies are constructed using integer scaling parameters 1,2 and 3 connected with the lepton series and square roots of charged lepton mass ratios associated with electron. Estimated rest masses of the three neutrinos are 0.289 meV/c², 8.297 meV/c² and 51.03 meV/c² respectively, yielding a total neutrino mass sum of 59.63 meV/c². Including antineutrinos, the combined mass sum is 0.12 eV/c², consistent with cosmological constraints and the Dirac neutrino hypothesis. For data fitting, we consider a coefficient of 0.88. This coefficient may be refined with future observations and theoretical developments.
Keywords: 
;  ;  ;  ;  ;  

1. Introduction

The origin and absolute scale of neutrino masses remain one of the central mysteries in particle physics. We approach this problem through a Dirac seesaw framework [1,2,3,4,5,6,7,8] inspired by our proposed 4G model of final unification having four different gravitational constants and an electroweak fermion of rest energy 585 GeV [9,10,11]. Within this model, we derive neutrino masses based on a high-scale Dirac mass term of 585 GeV and a unified gravitational mass associated with the Stoney scale [12,13]. To better match the mass observations, a fitting coefficient of 0.88 is applied. It can have a range of (0.85 to 0.9).

2. Modified Seesaw Mass Formula

Based on the Seesaw model, we adopt a modified formula in the following way. It needs a critical review at fundamental level. For the time being it can be considered as a reference mass formula.
m l υ k * n * m l e p t o n m e M D 2 M G U T 0.88 * n * m l e p t o n m e M w f 2 M S t o n e y
where ,   m l υ Mass   of   lepton   neutrino k A   coefficient   needs   attention   and   review 0.88 n = 1 , 2 , 3   for   electron ,   muon   and   tau   respectively . m l e p t o n m e Mass   of   electron   or   Muon   or   Tau Mass   of   electron M D Dirac   mass M w f 584.725   GeV / c 2
Proposed   electroweak   fermion   of   our   4 G   model   of   final   unification   [9,10,11]
M G u t Grand   Unified   mass   unit
M S t o n e y e 2 4 π ε 0 G N 1.85921 × 10 9   kg Stoney   mass   [12,13]
GN ≅ Newtonian gravitational constant
The factor 0.88 is included as a phenomenological correction factor, likely tied to radiative or cosmological damping effects. These values suggest a hierarchical pattern among neutrino masses, with the electron neutrino being the lightest and tau neutrino the heaviest. This mass distribution is a natural outcome of the formula used and reflects the scaling with lepton mass and generation index. In terms of gravitational and electromagnetic force ratio associated with M w f having a charge e can be expressed as,
m l υ 0.88 * n * 4 π ε 0 G N M w f 2 e 2 m l e p t o n m e M w f

3. Calculated Neutrino Masses and the Cosmological Observations

At n=1, Electron neutrino mass is m e υ 0.289   meV / c 2
At n=2, Muon neutrino mass is m μ υ 8.297   meV / c 2
At n=3, Tau neutrino mass is m τ υ 51.03   meV / c 2
Sum of the three neutrino rest masses can be expressed as,
m υ c 2 0 . 289 + 8.297 + 51.03   59 . 63   meV
Sum of the three anti neutrino rest masses can also be expressed as,
m υ ¯ c 2 0 . 289 + 8.3 + 51.0   59 . 63   meV
m υ c 2 + m υ ¯ c 2 2 * 59.63   119.26   meV
This value is consistent with cosmological observations (Planck 2018, DESI 2024) [17,18].

4. Mass Splitting of the Estimated Neutrinos Using the Squared Mass Differences

For the above estimated neutrino masses,
m τ υ 2 m μ υ 2 c 4 2.54 × 10 3   eV 2
m μ υ 2 m e υ 2 c 4 6.875 × 10 5   eV 2
These values are well-aligned with experimental data from solar and atmospheric neutrino oscillations [19,20]. The mass-squared differences are key observables in neutrino physics. Their compatibility with experimental results provides support for the proposed mass model and helps validate the scaling relations applied [14,15,16,17,18].

5. To Replace the Stoney Scale and the Planck Scale

The Stoney scale [11,12], introduced by George Stoney before the advent of quantum theory, is based on the elementary constants e , G N   and   c and defines a natural gravitational-electromagnetic mass scale. It is given by,
M S t o n e y e 2 4 π ε 0 G N 1.85921 × 10 9   kg
Using the definition of the fine-structure constant,
α e 2 4 π ε 0 c
We obtain the relation,
M S t o n e y α c G N α M P l a n c k
This shows that the Stoney mass is naturally suppressed compared to the Planck mass by a factor of α 1 11.7 . In this context, the Stoney mass may be viewed as an intermediate scale connecting gravity and electromagnetism, and its appearance in our seesaw formulation highlights a possible coupling between charged lepton mass ratios and unified gravitational effects. Thus, our proposed seesaw relation can be expressed as,
m l υ k * n α * m l e p t o n m e M w f 2 M P l a n c k   where   k 0.85   to   0 . 9 0.88
Following this relation, quantitatively, in a trial-error method, we have noticed that,
k α ln M w f m p m e 10.193 k α × ln M w f m p m e 0.871
Now k * n α can be expressed as,
k n α n ln M w f m p m e ln M w f m p m e n
Thus,
m l υ ln M w f m p m e n * m l e p t o n m e M w f 2 M P l a n c k

6. General Discussion

Our approach assumes Dirac neutrinos, supported by the absence of neutrino less double beta decay and lepton number violation. This contrasts with conventional Type-I seesaw models which typically favour Majorana neutrinos due to lepton number violation considerations. The model’s consistency with cosmological bounds (total mass < 0.12 eV) strengthens its viability. The introduction of the 0.88 coefficient seems to direct towards a deeper unification of physics or understated suppression effects inherent in cosmic evolution.
The use of a Dirac framework suggests that neutrinos have distinct antiparticles and conserve lepton number. This choice is not only conceptually economical but also observationally motivated. Furthermore, the cosmological data from Planck and DESI provides strong upper limits on the neutrino mass sum, and our results satisfy these bounds comfortably.
Currently, there is limited clarity on the cosmological distinction between neutrinos and antineutrinos-particularly regarding their thermal histories, possible annihilation, and relic asymmetries. Further theoretical and observational studies are required to explore these aspects, especially in the context of Dirac neutrino models where lepton number conservation plays a crucial role.
Although neutrinos and antineutrinos can, in principle, annihilate via weak interactions, such annihilations become highly suppressed after thermal decoupling in the early universe. In the context of Dirac neutrinos, where lepton number is conserved and neutrinos are distinct from antineutrinos, it remains unclear whether any relic asymmetry could have influenced their annihilation history. This issue merits deeper theoretical investigation.

7. Applications and Significance of the 585 GeV Electroweak (Dirac) Fermion

The 585 GeV electroweak Dirac fermion posited in our 4G unification model is supported by multiple independent lines of evidence spanning nuclear physics and astrophysical observations [9,10,11]. Nuclear structural analyses suggest signatures consistent with the physical existence of such a heavy fermion, offering new insight into the interplay between nuclear phenomena and electroweak scale physics.
From an astrophysical perspective [9], the presence of unexplained TeV-scale gamma rays observed in galactic and extragalactic sources can be naturally accounted for by particle processes involving this 585 GeV fermion (in place of electron or proton), including annihilation and inverse Compton scattering, thereby bridging particle physics and high-energy astrophysics in a unified framework.
A key phenomenological scaling factor appearing in our model is the ratio of the geometric mean of the charged and neutral pion masses (~137.26 MeV) to that of the weak boson masses (~85.61 GeV), which numerically evaluates to approximately 0.0016. This dimensionless ratio encapsulates the profound hierarchical gap between the strong interaction scale and the electroweak scale and forms a cornerstone of the mass relations underlying our Dirac seesaw construction involving the 585 GeV electroweak fermion. Importantly, this ratio is not merely a numerical coincidence but has substantive implications for understanding nuclear stability and nuclear binding energy. The interplay of these fundamental mass scales suggests that the dynamics governing nuclear forces and nucleon interactions may be intimately connected to electroweak-scale physics mediated by the 585 GeV fermion. For a deeper exploration of how this mass ratio informs nuclear binding mechanisms and stability criteria, interested readers are encouraged to refer our recent preprints and other peer-reviewed publications [21,22], where these connections are discussed in detail with complementary theoretical and phenomenological analyses.
m p M w f 0.001605 m π c 2 0 m π c 2 ± m w c 2 ± m z c 2 0 134.98 × 139.57   MeV 80379.0 × 91187.6   MeV 0.0016032 β .... say
Based on this electroweak coefficient β 0.001605 , stability corresponding to nuclear beta decay can be understood with the following relation.
A s 2 Z + β 2 Z 2 2 Z + 0.00642 Z 2
A s 2 Z 2 Z 2 A s 2 Z 4 Z 2 β
One can find a similar relation in the literature [23]. This relation can be well tested for Z=21 to 92. For example,
45 2 × 21 4 21 2 0.00170 ; 63 2 × 29 4 29 2 0.00149 ;   89 2 × 39 4 39 2 0.00181 ; 109 2 × 47 4 47 2 0.0017 ; 169 2 × 69 4 69 2 0.00163 ; 238 2 × 92 4 92 2 0.001595 ;  
This is one best practical and quantitative application of our proposed electroweak fermion and bosons. Following this relation and based on various semi empirical mass formulae [23,24,25,26,27,28,29,30,31], by knowing any stable mass number, its corresponding proton number can be estimated with,
Z A s 1 + 1 + 0.0064 A s A s 2 + 0.0153 A s 2 / 3
where   a c 2 a a s y 0.71   MeV 2 × 23.21   MeV 0.6615   MeV 2 × 21.6091   MeV 0.0153 Considering this relation, we are working on understanding the stable super heavy elements.
One important point to be noted here is that, self-attractive (potential) energy of proton having a nuclear charge [9,10] of e n 2.9464 e and root mean square radius of 0.83 fm [11,32], can be expressed as,
3 5 e n 2 4 π ε 0 R p 3 5 α s e 2 4 π ε 0 0.83   fm 9.04   MeV where ,   R p Root   mean   square   radius   of   proton   α s e e n 2 Strong   coupling   constant   0 . 1152  
[9,10]
With reference to the nuclear binding energy scheme, maximum binding energy per nucleon observed in the cases of Iron and Nickel atomic nuclei is around 8.8 MeV. Following this observation, independent of total binding energy calculations, maximum binding energy per nucleon for medium and heavy atomic nuclides can be expressed directly as,
B E A s max   1 exp A s β 1 3 × 9.1 ± 0.05   MeV where   A s > 56 ,   β 0 . 001605   Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
Maximum binding energy per nucleon for light atomic nuclides can be expressed directly as,
B E A s max A s 56 α s × 1 exp A s β 1 3 × 9.1 ± 0.05   MeV
where ,   4 A s 56   α s Strong   coupling   constant 0 . 1152 β 0 . 001605   Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
Accuracy point of view, for light, medium and heavy atomic nuclides, energy coefficient seems to be around 9.15 MeV and for super heavy atomic nuclides, energy coefficient seems to be around 9.05 MeV. See the following Table 1 for the estimated data. It needs further study.
Proceeding further, investigations into the role of fundamental constants, notably the Planck length and the unified Stoney mass, reveal their significance in low-energy nuclear phenomena such as neutron lifetime measurements. Their inclusion in our seesaw neutrino mass formula is thus well motivated, providing an intermediate gravitational-electromagnetic mass scale that mediates neutrino mass suppression consistently with the Dirac framework.
Collectively, these theoretical and phenomenological findings position the 585 GeV electroweak Dirac fermion as a well-founded component connecting neutrino mass generation, nuclear structure, and cosmic high-energy phenomena. This synthesis motivates targeted experimental strategies both at collider experiments and in astrophysical observations to test the existence and properties of this particle, advancing our understanding of fundamental mass hierarchies and unification.

8. Conclusion

Our 4G model of final unification, combined with a Dirac seesaw mechanism and lepton mass ratios, yields physically meaningful neutrino mass estimates consistent with known neutrino oscillations and cosmological data. Further exploration of the proposed 585 GeV Dirac mass and the unified gravitational Stoney mass may uncover deeper structures in neutrino physics.
This approach offers a compelling alternative to conventional Majorana-based models, and its alignment with data encourages further theoretical and phenomenological development. Future studies may focus on refining the damping coefficient, exploring links with quantum gravity, and identifying potential experimental signals.

Data Availability Statement

The data that support the findings of this study are openly available.

Acknowledgements

Authors are very much thankful to the ‘ChatGPT’ for helping us in drafting the paper for its best presentation. Author Seshavatharam is indebted to professors Padma Shri M. Nagaphani Sarma, Chairman, Shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject.

Conflicts of Interest

Authors declare no conflict of interest in this paper or subject

References

  1. Xuheng, Luo; et al. Dirac neutrinos and Neff. JCAP 06, 058, 2020.
  2. Martin Hirsch, Rahul Srivastava, José W.F. Valle, Can one ever prove that neutrinos are Dirac particles? Physics Letters B, 781, 302-305, 2018.
  3. Bilenky, SM. Neutrinos: Majorana or Dirac? Universe. 6(9),134, 2020.
  4. M. Sajjad Athar et al. Status and Perspectives of Neutrino Physics. Progress in Particle and Nuclear Physics, 124, 103947, 2022. [CrossRef]
  5. Aditya Dev. Neutrino Oscillations and Mass Models.arXiv:2310.17685v1,2023.
  6. Radovan Dermisek. Neutrino masses and mixing, quark-lepton symmetry, and strong right-handed neutrino hierarchy. Phys. Rev. D 70, 073016, 2004. [CrossRef]
  7. Dimitar Valev. Neutrino and graviton rest mass estimations by a phenomenological approach. arXiv:hep-ph/0507255v6, 2005. [CrossRef]
  8. KATRIN Collaboration. Direct neutrino-mass measurement based on 259 days of KATRIN data. Science. 388(6743),180-185, 2025.
  9. Seshavatharam U. V. S., Gunavardhana Naidu T and Lakshminarayana S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451, 020003, 2022.
  10. Seshavatharam U. V., S. , Gunavardhana Naidu T and Lakshminarayana S. Nuclear evidences for confirming the physical existence of 585 GeV weak fermion and galactic observations of TeV radiation. International Journal of Advanced Astronomy. 13, (1), 1-17, 2025.
  11. Seshavatharam, U. V. S., Naidu, T. G. and Lakshminarayana, S. On the Possible Role of the Planck Length in Fitting the Neutron Lifetime. Preprints 2025, 2025070530.
  12. Barrow, J. D. Natural Units Before Planck. Quarterly Journal of the Royal Astronomical Society, 24, 24-26,1983.
  13. Andrew Wutke. From Newton to universal Planck natural units– disentangling the constants of nature. J. Phys. Commun. 7 (2023) 115001. [CrossRef]
  14. Majkic, R. Neutrino Masses Prediction. Journal of High Energy Physics, Gravitation and Cosmology, 10, 1367-1379, 2024.
  15. de Salas PF, Gariazzo S, Mena O, Ternes CA and Tórtola M. Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects. Front. Astron. Space Sci. 5, 36, 2018. [CrossRef]
  16. R. Abbasi et al. Critical look at the cosmological neutrino mass bound. Phys. Rev. Lett. 134, 091801,2025.
  17. A.G. Adame, et al. DESI Collaboration, 2024. Final results on the sum of neutrino masses from BAO and Lyman-α forest. JCAP02, 021,2025.
  18. Gabriel, P. Lynch and Lloyd Knox. What’s the matter with Σmν? arXiv:2503.14470v1 [astro-ph.CO], 2025.
  19. Masayuki Nakahata. History of solar neutrino observations. Prog. Theor. Exp. Phys. 2022 12B103(22 pages). [CrossRef]
  20. Wan, Linyan. Atmospheric Neutrinos Revisited. Physics, 16, Dec. 2023.
  21. Seshavatharam U. V. S., Lakshminarayana, S. Revised Electroweak and Asymmetry Terms of the Strong and Electroweak Mass Formula Associated with 4G Model of Final Unification. Preprints 2025050425, 2025.
  22. Seshavatharam U. V., S. , Lakshminarayana S. Exploring the Possibility of Running an Electric Locomotive with Cold Nuclear Fusion by Considering Iron-56 or Magnesium-24 as Nuclear Fuels. New Energy Exploitation and Application, 4(1), 161–174, 2025.
  23. P.R. Chowdhury, C. P.R. Chowdhury, C. Samanta, D.N. Basu, Modified Bethe– Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A 20, 1605–1618, 2005.
  24. Bethe H., A. Thomas-Fermi Theory of Nuclei. Phys. Rev., 167(4), 879-907, 1968. [CrossRef]
  25. Myers W., D. and Swiatecki W. J. Nuclear Properties According to the Thomas-Fermi Model.LBL-36557 Rev. UC-413, 1995. [CrossRef]
  26. Myers W., D. and Swiatecki W. J. Table of nuclear masses according to the 1994 Thomas-Fermi model. United States: N. p., 1994. Web.
  27. G. Royer, On the coefficients of the liquid drop model mass formulae and nuclear radii. Nuclear Physics A, 807, 3–4, 105-118, 2008. [CrossRef]
  28. Djelloul Benzaid, Salaheddine Bentridi, Abdelkader Kerraci, Naima Amrani. Bethe–Weizsa¨cker semiempirical mass formula coefficients 2019 update based on AME2016.NUCL. SCI. TECH. 31:9, 2020.
  29. Gao, Z.P. , Wang, YJ., Lü, HL. et al., Machine learning the nuclear mass. NUCL. SCI. TECH. 32, 109, 2021.
  30. Peng Guo, et. al. (DRHBc Mass Table Collaboration), Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, II: Even-Z nuclei. Atomic Data and Nuclear Data Tables 158 (2024) 101661.
  31. Cht. Mavrodiev S, Deliyergiyev M.A. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. Int. J. Mod. Phys. E 27: 1850015, 2018.
  32. H. Gao M. Vanderhaeghen, The proton charge radius. Rev. Mod. Phys. 94, 015002, 2022.
Table 1. Estimated maximum binding energy per nucleon of assumed stable mass numbers.
Table 1. Estimated maximum binding energy per nucleon of assumed stable mass numbers.
Assumed   stable   mass   number A s A s β Estimated maximum binding energy (MeV) Estimated maximum binding energy per nucleon (MeV) Assumed   stable   mass   number A s A s β Estimated maximum binding energy (MeV) Estimated maximum binding energy per nucleon (MeV)
4 0.00642 26.80 6.70 179 0.287295 1448.19 8.09
5 0.008025 34.35 6.87 180 0.2889 1455.11 8.08
6 0.00963 42.08 7.01 181 0.290505 1462.02 8.08
7 0.011235 49.94 7.13 182 0.29211 1468.91 8.07
8 0.01284 57.93 7.24 183 0.293715 1475.79 8.06
9 0.014445 66.03 7.34 184 0.29532 1482.65 8.06
10 0.01605 74.22 7.42 185 0.296925 1489.50 8.05
11 0.017655 82.49 7.50 186 0.29853 1496.33 8.04
12 0.01926 90.85 7.57 187 0.300135 1503.15 8.04
13 0.020865 99.28 7.64 188 0.30174 1509.95 8.03
14 0.02247 107.77 7.70 189 0.303345 1516.73 8.03
15 0.024075 116.33 7.76 190 0.30495 1523.50 8.02
16 0.02568 124.94 7.81 191 0.306555 1530.26 8.01
17 0.027285 133.61 7.86 192 0.30816 1537.00 8.01
18 0.02889 142.32 7.91 193 0.309765 1543.73 8.00
19 0.030495 151.08 7.95 194 0.31137 1550.44 7.99
20 0.0321 159.89 7.99 195 0.312975 1557.13 7.99
21 0.033705 168.73 8.03 196 0.31458 1563.81 7.98
22 0.03531 177.62 8.07 197 0.316185 1570.47 7.97
23 0.036915 186.54 8.11 198 0.31779 1577.12 7.97
24 0.03852 195.50 8.15 199 0.319395 1583.76 7.96
25 0.040125 204.49 8.18 200 0.321 1590.37 7.95
26 0.04173 213.51 8.21 201 0.322605 1596.98 7.95
27 0.043335 222.56 8.24 202 0.32421 1603.56 7.94
28 0.04494 231.64 8.27 203 0.325815 1610.13 7.93
29 0.046545 240.75 8.30 204 0.32742 1616.69 7.92
30 0.04815 249.88 8.33 205 0.329025 1623.23 7.92
31 0.049755 259.04 8.36 206 0.33063 1629.75 7.91
32 0.05136 268.22 8.38 207 0.332235 1636.26 7.90
33 0.052965 277.43 8.41 208 0.33384 1642.75 7.90
34 0.05457 286.65 8.43 209 0.335445 1649.22 7.89
35 0.056175 295.90 8.45 210 0.33705 1655.68 7.88
36 0.05778 305.17 8.48 211 0.338655 1662.13 7.88
37 0.059385 314.46 8.50 212 0.34026 1668.56 7.87
38 0.06099 323.76 8.52 213 0.341865 1674.97 7.86
39 0.062595 333.08 8.54 214 0.34347 1681.36 7.86
40 0.0642 342.42 8.56 215 0.345075 1687.74 7.85
41 0.065805 351.78 8.58 216 0.34668 1694.11 7.84
42 0.06741 361.15 8.60 217 0.348285 1700.46 7.84
43 0.069015 370.53 8.62 218 0.34989 1706.79 7.83
44 0.07062 379.93 8.63 219 0.351495 1713.10 7.82
45 0.072225 389.34 8.65 220 0.3531 1719.40 7.82
46 0.07383 398.77 8.67 221 0.354705 1725.68 7.81
47 0.075435 408.21 8.69 222 0.35631 1731.95 7.80
48 0.07704 417.66 8.70 223 0.357915 1738.20 7.79
49 0.078645 427.12 8.72 224 0.35952 1744.43 7.79
50 0.08025 436.59 8.73 225 0.361125 1750.65 7.78
51 0.081855 446.07 8.75 226 0.36273 1756.85 7.77
52 0.08346 455.56 8.76 227 0.364335 1763.04 7.77
53 0.085065 465.07 8.77 228 0.36594 1769.20 7.76
54 0.08667 474.58 8.79 229 0.367545 1775.35 7.75
55 0.088275 484.10 8.80 230 0.36915 1781.49 7.75
56 0.08988 493.63 8.81 231 0.370755 1787.61 7.74
57 0.091485 502.14 8.81 232 0.37236 1793.71 7.73
58 0.09309 510.64 8.80 233 0.373965 1799.79 7.72
59 0.094695 519.12 8.80 234 0.37557 1805.86 7.72
60 0.0963 527.60 8.79 235 0.377175 1811.91 7.71
61 0.097905 536.07 8.79 236 0.37878 1817.94 7.70
62 0.09951 544.52 8.78 237 0.380385 1823.96 7.70
63 0.101115 552.97 8.78 238 0.38199 1829.96 7.69
64 0.10272 561.40 8.77 239 0.383595 1835.94 7.68
65 0.104325 569.82 8.77 240 0.3852 1841.91 7.67
66 0.10593 578.23 8.76 241 0.386805 1847.86 7.67
67 0.107535 586.63 8.76 242 0.38841 1853.79 7.66
68 0.10914 595.01 8.75 243 0.390015 1859.70 7.65
69 0.110745 603.39 8.74 244 0.39162 1865.60 7.65
70 0.11235 611.75 8.74 245 0.393225 1871.48 7.64
71 0.113955 620.10 8.73 246 0.39483 1877.34 7.63
72 0.11556 628.45 8.73 247 0.396435 1883.19 7.62
73 0.117165 636.77 8.72 248 0.39804 1889.01 7.62
74 0.11877 645.09 8.72 249 0.399645 1894.82 7.61
75 0.120375 653.40 8.71 250 0.40125 1900.62 7.60
76 0.12198 661.69 8.71 251 0.402855 1906.39 7.60
77 0.123585 669.98 8.70 252 0.40446 1912.15 7.59
78 0.12519 678.25 8.70 253 0.406065 1917.89 7.58
79 0.126795 686.51 8.69 254 0.40767 1923.62 7.57
80 0.1284 694.75 8.68 255 0.409275 1929.32 7.57
81 0.130005 702.99 8.68 256 0.41088 1935.01 7.56
82 0.13161 711.21 8.67 257 0.412485 1940.68 7.55
83 0.133215 719.42 8.67 258 0.41409 1946.33 7.54
84 0.13482 727.62 8.66 259 0.415695 1951.97 7.54
85 0.136425 735.81 8.66 260 0.4173 1957.58 7.53
86 0.13803 743.99 8.65 261 0.418905 1963.18 7.52
87 0.139635 752.15 8.65 262 0.42051 1968.76 7.51
88 0.14124 760.31 8.64 263 0.422115 1974.33 7.51
89 0.142845 768.45 8.63 264 0.42372 1979.87 7.50
90 0.14445 776.57 8.63 265 0.425325 1985.40 7.49
91 0.146055 784.69 8.62 266 0.42693 1990.91 7.48
92 0.14766 792.80 8.62 267 0.428535 1996.40 7.48
93 0.149265 800.89 8.61 268 0.43014 2001.87 7.47
94 0.15087 808.97 8.61 269 0.431745 2007.33 7.46
95 0.152475 817.04 8.60 270 0.43335 2012.76 7.45
96 0.15408 825.09 8.59 271 0.434955 2018.18 7.45
97 0.155685 833.13 8.59 272 0.43656 2023.58 7.44
98 0.15729 841.17 8.58 273 0.438165 2028.96 7.43
99 0.158895 849.18 8.58 274 0.43977 2034.32 7.42
100 0.1605 857.19 8.57 275 0.441375 2039.67 7.42
101 0.162105 865.18 8.57 276 0.44298 2044.99 7.41
102 0.16371 873.17 8.56 277 0.444585 2050.30 7.40
103 0.165315 881.14 8.55 278 0.44619 2055.59 7.39
104 0.16692 889.09 8.55 279 0.447795 2060.86 7.39
105 0.168525 897.04 8.54 280 0.4494 2066.11 7.38
106 0.17013 904.97 8.54 281 0.451005 2071.35 7.37
107 0.171735 912.89 8.53 282 0.45261 2076.56 7.36
108 0.17334 920.80 8.53 283 0.454215 2081.76 7.36
109 0.174945 928.69 8.52 284 0.45582 2086.93 7.35
110 0.17655 936.57 8.51 285 0.457425 2092.09 7.34
111 0.178155 944.44 8.51 286 0.45903 2097.23 7.33
112 0.17976 952.30 8.50 287 0.460635 2102.35 7.33
113 0.181365 960.14 8.50 288 0.46224 2107.45 7.32
114 0.18297 967.97 8.49 289 0.463845 2112.53 7.31
115 0.184575 975.79 8.49 290 0.46545 2117.59 7.30
116 0.18618 983.59 8.48 291 0.467055 2122.64 7.29
117 0.187785 991.39 8.47 292 0.46866 2127.66 7.29
118 0.18939 999.17 8.47 293 0.470265 2132.67 7.28
119 0.190995 1006.93 8.46 294 0.47187 2137.65 7.27
120 0.1926 1014.69 8.46 295 0.473475 2142.62 7.26
121 0.194205 1022.43 8.45 296 0.47508 2147.57 7.26
122 0.19581 1030.16 8.44 297 0.476685 2152.50 7.25
123 0.197415 1037.87 8.44 298 0.47829 2157.41 7.24
124 0.19902 1045.57 8.43 299 0.479895 2162.29 7.23
125 0.200625 1053.26 8.43 300 0.4815 2167.16 7.22
126 0.20223 1060.94 8.42 301 0.483105 2172.01 7.22
127 0.203835 1068.60 8.41 302 0.48471 2176.85 7.21
128 0.20544 1076.25 8.41 303 0.486315 2181.66 7.20
129 0.207045 1083.89 8.40 304 0.48792 2186.45 7.19
130 0.20865 1091.51 8.40 305 0.489525 2191.22 7.18
131 0.210255 1099.12 8.39 306 0.49113 2195.97 7.18
132 0.21186 1106.72 8.38 307 0.492735 2200.70 7.17
133 0.213465 1114.30 8.38 308 0.49434 2205.42 7.16
134 0.21507 1121.87 8.37 309 0.495945 2210.11 7.15
135 0.216675 1129.43 8.37 310 0.49755 2214.78 7.14
136 0.21828 1136.97 8.36 311 0.499155 2219.43 7.14
137 0.219885 1144.50 8.35 312 0.50076 2224.06 7.13
138 0.22149 1152.01 8.35 313 0.502365 2228.68 7.12
139 0.223095 1159.52 8.34 314 0.50397 2233.27 7.11
140 0.2247 1167.01 8.34 315 0.505575 2237.84 7.10
141 0.226305 1174.48 8.33 316 0.50718 2242.39 7.10
142 0.22791 1181.94 8.32 317 0.508785 2246.92 7.09
143 0.229515 1189.39 8.32 318 0.51039 2251.43 7.08
144 0.23112 1196.83 8.31 319 0.511995 2255.92 7.07
145 0.232725 1204.25 8.31 320 0.5136 2260.39 7.06
146 0.23433 1211.66 8.30 321 0.515205 2264.84 7.06
147 0.235935 1219.05 8.29 322 0.51681 2269.27 7.05
148 0.23754 1226.43 8.29 323 0.518415 2273.68 7.04
149 0.239145 1233.80 8.28 324 0.52002 2278.07 7.03
150 0.24075 1241.15 8.27 325 0.521625 2282.44 7.02
151 0.242355 1248.49 8.27 326 0.52323 2286.78 7.01
152 0.24396 1255.81 8.26 327 0.524835 2291.11 7.01
153 0.245565 1263.12 8.26 328 0.52644 2295.42 7.00
154 0.24717 1270.42 8.25 329 0.528045 2299.70 6.99
155 0.248775 1277.70 8.24 330 0.52965 2303.96 6.98
156 0.25038 1284.97 8.24 331 0.531255 2308.21 6.97
157 0.251985 1292.22 8.23 332 0.53286 2312.43 6.97
158 0.25359 1299.46 8.22 333 0.534465 2316.63 6.96
159 0.255195 1306.69 8.22 334 0.53607 2320.81 6.95
160 0.2568 1313.90 8.21 335 0.537675 2324.97 6.94
161 0.258405 1321.10 8.21 336 0.53928 2329.10 6.93
162 0.26001 1328.28 8.20 337 0.540885 2333.22 6.92
163 0.261615 1335.45 8.19 338 0.54249 2337.32 6.92
164 0.26322 1342.61 8.19 339 0.544095 2341.39 6.91
165 0.264825 1349.75 8.18 340 0.5457 2345.44 6.90
166 0.26643 1356.87 8.17 341 0.547305 2349.47 6.89
167 0.268035 1363.99 8.17 342 0.54891 2353.48 6.88
168 0.26964 1371.08 8.16 343 0.550515 2357.47 6.87
169 0.271245 1378.17 8.15 344 0.55212 2361.44 6.86
170 0.27285 1385.23 8.15 345 0.553725 2365.38 6.86
171 0.274455 1392.29 8.14 346 0.55533 2369.30 6.85
172 0.27606 1399.33 8.14 347 0.556935 2373.21 6.84
173 0.277665 1406.35 8.13 348 0.55854 2377.09 6.83
174 0.27927 1413.36 8.12 349 0.560145 2380.94 6.82
175 0.280875 1420.36 8.12 350 0.56175 2384.78 6.81
176 0.28248 1427.34 8.11 351 0.563355 2388.59 6.81
177 0.284085 1434.30 8.10 352 0.56496 2392.39 6.80
178 0.28569 1441.25 8.10 353 0.566565 2396.16 6.79
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated