Submitted:
25 December 2025
Posted:
26 December 2025
You are already at the latest version
Abstract
This paper advances Coherence Thermodynamics for understanding systems composed purely of information and coherence. It derives five laws of coherence thermodynamics and applies them to two case studies. Three canonical modes of coherent informational systems are developed: Standing State, Computation Crucible, and Holographic Projection. Each mode has its own dynamics and natural units, with thermodynamic coherence defined as the reciprocal of the entropy–temperature product. Within this theory, reasoning is proposed to emerge as an ordered, work‑performing process that locally resists entropy and generates coherent structure across universal features.
