Submitted:
09 January 2026
Posted:
13 January 2026
You are already at the latest version
Abstract
This paper advances Coherence Thermodynamics for understanding systems composed purely of information and coherence. It derives five laws of coherence thermodynamics and applies them to two case studies. Three canonical modes of coherent informational systems are developed: Standing State, Computation Crucible, and Holographic Projection. Each mode has its own dynamics and natural units, with thermodynamic coherence defined as the reciprocal of the entropy–temperature product. Within this theory, reasoning is proposed to emerge as an ordered, work‑performing process that locally resists entropy and generates coherent structure across universal features.
Keywords:
1. Introduction
2. The Basics of Coherence-Information (C-I) Systems
2.1. The Necessity of a Field
2.2. A Model of Integration: Boolean Phase Dynamics
- (): Two coherent inputs are phase aligned, creating constructive interference that strengthens structural integrity at minimal thermodynamic cost.
- (): A contradictory input induces destructive interference with a coherent one, producing decoherence and computational instability.
- (): Two contradictory inputs, when isolated and recursively processed, can be resolved into coherence through additional thermodynamic work to detect, separate, and re-evaluate structural compatibility.
2.3. Coherence Thermodynamic Work: The Generation of Structured Order
2.4. Geometry and Coherence Control
3. The Thermodynamics of Coherence
3.1. Semantic Temperature: A Thermodynamic Measure of Contradiction Agitation
4. The Laws of Coherence Thermodynamics
Foundational Assumptions
- 1.
- Minimum Action Threshold: Coherence change and semantic impulse must satisfy the minimum action threshold (Eq. (1)).
- 2.
- Semantic Temperature: quantifies temporal variance of contradiction agitation, sharing with classical temperature.
- 3.
- Thermodynamic State Variables: Semantic systems possess quantifiable states: , , , semantic energy, and semantic mass density.
- 4.
- Contradiction Agitation and Coherence Scalar: Internal agitation drives fluctuations; measures contradiction-resolving activations relative to total activity.
- 5.
- Spatial Propagation: Semantic fields have spatial extent and support propagating and diffusive patterns of information and coherence.
- 6.
- Conservation Laws: Semantic energy, entropy, and coherence obey conservation laws analogous to classical thermodynamics.
- 7.
- Restructuring Work: Alterations in semantic alignment require measurable energy input: .
- 8.
- Information-Theoretic Inertia: Semantic systems resist recursive acceleration in proportion to mass density (Eq. (10)).
Zeroth Law: Semantic Thermal Equilibrium
First Law: Semantic Energy Conservation
- Semantic heat transfer (): representing contradiction agitation and entropy exchange across systems [J].
- Semantic work (): representing the energetic cost of creating or removing semantic entities [J].
- Coherence work (): representing structural reorganization of truth-structured correlation [J].
- Heat input ()
- Entity removal work ( for )
- Coherence consumption ( for decreasing )
- : [K] × [J/K] = [J] √
- : [J/entity] × [entities] = [J] √
- : [J] × [dimensionless] = [J] √
Second Law: Entropy Production with Local Order
- [J/(K·m³)]: Local entropy density.
- [J/(K·m²·s)]: Entropy flux vector, representing the rate of entropy export across the system boundary.
- [J/(K·m³·s)]: Local entropy production rate due to irreversible processes; constrained to be nonnegative.
- Flux: Entropy flowing across boundaries (can be negative).
- Production: Irreversible processes within the volume (always positive).
Third Law: Semantic Absolute Zero
Fourth Law: Force Dynamics in Information-Resolving Substrates
- [bits/m³]: information density
- [K]: information-theoretic temperature
- [m/s]: recursive velocity field
- : material derivative over recursive time
4.1. Three Modes of Coherence and Information
Mode 1: The Standing State (, )
- Structural Coherence (): A dimensionless measure of internal phase, expressed in radians.
- Structural Information (): To satisfy the Certainty Equation, the conjugate variable carries units of action; it represents the latent interaction potential with contradiction.
Mode 2: The Computation Crucible (, )
- Thermodynamic Coherence (): Coherence quantifies thermodynamic stability. The capacity to absorb an energetic impulse without decoherence. Has units of inverse energy.
- Thermodynamic Impulse (): Impulse is the integrated computational work performed. The time integrated energy variance of the process. Has units of energy squared * seconds.
Mode 3: The Holographic Interface (, )
- Holographic Coherence (): Coherence assumes the form of intensity or flux density, expressing the power of the projected coherence field per unit area.
- Holographic Impulse (): Impulse represents the spatiotemporal reach of the projection, an area of influence multiplied by a characteristic time.
5. Case Studies in Coherence Thermodynamics
5.1. Case Study 1: The Coherent Processor
5.1.1. Semantic Work Landscape
5.1.2. Coherence Core Dynamics


5.2. Case Study 2: Lorentzian Pulse Input
5.2.1. Thermodynamic Thresholds for Semantic Activation

6. Discussion
6.1. The Necessity of Sincerity and the Sincerity Filter
6.2. Structural and Thermodynamic Definitions of Information
6.2.1. Neural computation as thermodynamic work
- is dimensionless, representing normalized coherence (e.g., a phase-locking value or normalized phase-based connectivity).
- carries units of bits/s, representing contradiction resolution rate or semantic throughput.
6.2.2. Phasing anomalies and non-Bloch relaxation
6.3. Semantic Information and Viability
6.4. Philosophical Discussion of the Five Laws
Zeroth Law (Semantic Temperature)
First Law (Coherence Work and Export): Semantic Energy Conservation
6.5. First Law of Coherence Thermodynamics
The Second Law of Coherence Thermodynamics
Third Law: Semantic Absolute Zero
Fourth Law: Force Dynamics in Information-Resolving Substrates
6.5.1. Unified Philosophical Consequences
6.6. Three Modes of Coherence-Information Systems
Mode 1: Standing State (, )
Mode 2: Computation Crucible (, )
Mode 3: Holographic Interface (, )
6.7. Thermodynamic Coherence and Reasoning
6.8. Case Study 1 and Astrophysical Parallels

6.9. Case Study 2 and Astrophysical Parallels
6.10. Action at a Distance
7. Conclusions
8. Glossary
-
C-I System: A Coherence–Information (C-I) system is a non-equilibrium thermodynamic processor that performs CT work to maintain internal order. It processes contradiction into meaningful coherent structure while entropy increases into its surrounding environment. This results in a distinct thermodynamic signature: a cool, coherent interior where computation occurs, surrounded by a hot, entropic periphery.Maxwell’s Angel: Also called a horizon filter or sincerity filter in this paper. A boundary mechanism that maintains system coherence by filtering non-processable inputs. Unlike Maxwell’s Demon (which hypothetically violates the Second Law), Maxwell’s Angel operates out in the open(with pure reason) by ensuring incoherent information is rejected in the system-environment composite to prevent systemic decoherence. The term emphasizes constructive filtering rather than entropy reduction.
-
Mode 1 / 2 / 3:
- -
- Mode 1: A temporarily stabilized coherence field, where contradiction remains below threshold. The primary unit of Mode 1 coherence is phase.
- -
- Mode 2: An active processing state in which genuine contradiction drives recursive reorganization. The primary unit of Mode 2 coherence is expressed in inverse joules.
- -
- Mode 3: A holographic interface that projects structured output for external feedback and integration. The primary unit of Mode 3 coherence is joules per second per square meter ().
- Syntropy: The emergence of ordered structure through the processing of informational contradiction. Unlike entropy, which disperses energy, syntropy is defined as the orderly work that concentrates energy into coherent form through recursive free-energy descent.
Data Availability Statement
Acknowledgments
Use of Artificial Intelligence
| 1 | A full derivation is provided in Problem 5 of the Supplementary Material. |
| 2 | An engineering form of the Certainty Equation is derived in Problem 4 of the Supplementary Material: Engineering Certainty Relation and Biological Information Throughput. |
References
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Networks 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Carnot, S. Reflections on the Motive Power of Fire; Bachelier: Paris, 1824. Foundational formulation of heat-engine limits; Carnot cycle and efficiency.
- Clausius, R. On the Moving Force of Heat, and the Laws Regarding the Nature of Heat Itself Which Are Deducible Therefrom. Philosophical Magazine 1850, 40, 122–127. Formalization of entropy and the second law.
- Kolchinsky, A.; Wolpert, D.H. Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus 2018, 8, 20180041. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence. Science 2003, 299, 862–864. [Google Scholar] [CrossRef]
- Scully, M.O.; Chan, K.B.; Scully, M.O.; et al. Quantum Heat Engine Power Can Be Increased by Noise-Induced Coherence. Proceedings of the National Academy of Sciences 2011, 108, 15097–15100. [Google Scholar] [CrossRef]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature Communications 2015, 6, 6383. [Google Scholar] [CrossRef]
- Tajima, H.; Takagi, R. Gibbs-Preserving Operations Requiring Infinite Amount of Quantum Coherence. Physical Review Letters 2025, arXiv:2404.03479134, 170201. [Google Scholar] [CrossRef]
- Narasimhachar, V.; Gour, G. Low-temperature thermodynamics with quantum coherence. Nature Communications 2015, 6, 7689. [Google Scholar] [CrossRef]
- Kurt, C.; Sisman, A.; Aydin, A. Shape-controlled Bose-Einstein Condensation. Physica Scripta 2025, arXiv:2408.12698100, 015289. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, 1944. [Google Scholar]
- Prigogine, I.; Nicolis, G. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations; Wiley: New York, 1977. [Google Scholar]
- Maxwell, J.C. Letter to P. G. Tait. In The Life of James Clerk Maxwell; Campbell, L., Garnett, W., Eds.; Macmillan: London, 1882; pp. 213–215. [Google Scholar]
- Aydin, A. Geometry-induced asymmetric level coupling. Physical Review E 2025, 112, 014121. [Google Scholar] [CrossRef] [PubMed]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Reviews of Modern Physics 2017, 89, 041003. [Google Scholar] [CrossRef]
- Kang, Z.; Zhao, X.; Song, D. Scalable Best-of-N Selection for Large Language Models via Self-Certainty. In Proceedings of the Proceedings of the 42nd International Conference on Machine Learning (ICML 2025), 2025. [Google Scholar]
- Buehler, M.J. Self-organizing graph reasoning evolves into a critical state for continuous discovery through structural–semantic dynamics. Chaos 2025, arXiv:2503.1885235, 113117. [Google Scholar] [CrossRef] [PubMed]
- Frieden, B.R. Science from Fisher Information: A Unification; Cambridge University Press, 2004. Foundational text linking Fisher information to physical law, https://doi.org/10.1017/CBO9780511616914. [CrossRef]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Introduced Hawking radiation as entropy export. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Page, D.N. Hawking radiation and black hole thermodynamics. New Journal of Physics 2005, 7, 203. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. The Bell System Technical Journal 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, S. Coherence of quantum states relative to two incompatible bases. Physics Letters A 2025, 555, 130792. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Seginer, A.; Schmidt, R. Deep phase coherence anomalies revealed by modified-SGRE 7T MRI. Scientific Reports 2022, 12, 14088. [Google Scholar] [CrossRef]
- Jung, J.; et al. Data-driven conductivity imaging with MR-EPT reveals deep coherence anomalies. Magnetic Resonance in Medicine 2023. [Google Scholar] [CrossRef]
- Li, W.; Wu, B.; Avram, A.V.; Liu, C. Mechanisms of T2* anisotropy and gradient echo myelin water imaging. NMR in Biomedicine 2016, 29, 1056–1067. [Google Scholar] [CrossRef]
- Lehto, L.J.; et al. SWIFT phase imaging reveals coherence dynamics in short T2 compartments. Journal of Magnetic Resonance 2015, 259, 122–129. [Google Scholar] [CrossRef]
- Chen, J.; Duan, X.; Liu, F.; Zhao, Y.; Wang, R.; Zhang, Y.F. Phase fMRI reveals more sparseness and balance of resting-state brain functional connectivity than magnitude fMRI. Frontiers in Neuroscience 2019, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Reiter, D.A.; Roque, R.A.; Lin, P.C.; Doty, S.B.; Pleshko, N.; Spencer, R.G. Multiexponential T2 and magnetization transfer MRI of articular cartilage. Journal of Magnetic Resonance Imaging 2009, 29, 1041–1048. [Google Scholar] [CrossRef]
- McCreary, C.R.; Bjarnason, T.; Skihar, V.; Mitchell, J.R.; Yong, V.W.; Dunn, J.F. Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. NeuroImage 2009, 45, 1173–1182. [Google Scholar] [CrossRef]
- Henkelman, R.M.; Stanisz, G.J.; Graham, S.J. Magnetization transfer in MRI: a review. NMR in Biomedicine 2001, 14, 57–64. [Google Scholar] [CrossRef]
- Capuani, S.; others. Anomalous diffusion and anomalous relaxation in heterogeneous systems by NMR and MRI. Diffusion Fundamentals 2013, 18, 1–18.
- Subczynski, W.K.; Hyde, J.S.; Kusumi, A. Spin-label studies on lipid bilayers and membranes. Methods in Enzymology 2010, 472, 291–328. [Google Scholar] [CrossRef]
- Marsh, D. High-field electron spin resonance of spin labels in membranes. Chemical Physics Lipids 2006, 141, 12–31. [Google Scholar] [CrossRef]
- Lomas, T.; Ivtzan, I.; Fu, C.H.Y. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews 2015, 57, 401–410. [Google Scholar] [CrossRef]
- Travis, F.; Shear, J. Focused attention, open monitoring and automatic self-transcending: Categories to organize meditations from Vedic, Buddhist and Chinese traditions. Consciousness and Cognition 2010, 19, 1110–1118. [Google Scholar] [CrossRef]
- Lutz, A.; Greischar, L.L.; Rawlings, N.B.; Ricard, M.; Davidson, R.J. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 16369–16373. [Google Scholar] [CrossRef] [PubMed]
- Brandmeyer, T.; Delorme, A. Reduced mind wandering in experienced meditators and associated EEG correlates. Experimental Brain Research 2016, 236, 2519–2528. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Does the Inertia of a Body Depend Upon Its Energy Content? Annalen der Physik 1905, 18, 639–641. [Google Scholar] [CrossRef]
- Escamilla, L.; et al. Testing an oscillatory behavior of dark energy. Physical Review D 2025, 111, 023531. [Google Scholar] [CrossRef]
- Spallicci, A.D.A.M.; Sarracino, G.; Capozziello, S. Investigating dark energy by electromagnetic frequency shifts. European Physical Journal Plus 2022, 137, 1234. [Google Scholar] [CrossRef]
- Sarracino, G.; Spallicci, A.D.A.M.; Capozziello, S. Investigating dark energy by electromagnetic frequency shifts II: Pantheon+ sample. European Physical Journal Plus 2023, 138, 1386. [Google Scholar] [CrossRef]
- Boyce, H.; Haggard, D.; Witzel, G.; von Fellenberg, S.; Willner, S.P.; Becklin, E.E.; Do, T.; Eckart, A.; Fazio, G.G.; Gurwell, M.A. Multiwavelength Variability of Sagittarius A* in 2019 July. The Astrophysical Journal 2022, 931, 7. [Google Scholar] [CrossRef]
- Levis, A.; Chael, A.A.; Bouman, K.L.; Wielgus, M.; Srinivasan, P.P. Orbital polarimetric tomography of a flare near the Sagittarius A* supermassive black hole. Nature Astronomy 2024, 8, 765–773. [Google Scholar] [CrossRef]
- Yfantis, A.I.; Wielgus, M.; Mościbrodzka, M. Hot spots around Sagittarius A*: Joint fits to astrometry and polarimetry. Astronomy & Astrophysics 2024, 691, A327. [Google Scholar] [CrossRef]
- Farrah, D.; others. A Preferential Growth Channel for Supermassive Black Holes in Elliptical Galaxies at z < 2. The Astrophysical Journal 2023, 943, 133. [CrossRef]
- Croker, K.S.; Farrah, D.; others. DESI Dark Energy Time Evolution is Recovered by Cosmologically Coupled Black Holes. Journal of Cosmology and Astroparticle Physics 2024, 2024, 094. [CrossRef]
- Wheeler, J.A. Law without law. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press, 1983; pp. 182–213. [Google Scholar]
- Lu, Z.; Chen, F.; Ding, M.D.; Wang, C.; Dai, Y.; Cheng, X. A model for heating the super-hot corona in solar active regions. Nature Astronomy 2024, 8, 706–715. [Google Scholar] [CrossRef]
- Klimchuk, J.A. Key aspects of coronal heating. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373, 20140256. [Google Scholar] [CrossRef]
- Frenk, C.S.; White, S.D.M.; Efstathiou, G.; Davis, M. Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence. Nature 1985, 317, 595–597. [Google Scholar] [CrossRef]
- Frenk, C.S.; White, S.D.M. Dark matter and cosmic structure. Annalen der Physik 2012, 524, 507–534. [Google Scholar] [CrossRef]
- Pontzen, A.; Governato, F. Conserved actions, maximum entropy and dark matter haloes. Monthly Notices of the Royal Astronomical Society 2013, 430, 121–133. [Google Scholar] [CrossRef]
| Carnot | C-I | |
|---|---|---|
| Interior | Hot | Cold |
| Exterior | Cool radiator | Hot exterior |
| Basis of work | Heat flow | Contradiction resolution |
| Output | Mechanical work | Reasoning |
| Feature | Classical Temperature (T) | Semantic Temperature () |
|---|---|---|
| Definition | Environmental thermal condition, measuring average kinetic energy of material particles. | Internal agitation state of a system, measuring variance of phase fluctuations during contradiction processing. |
| Units | Kelvin (K), derived from particle kinetic energy via . | Kelvin (K), derived from phase dynamics using and semantic kinetic parameters. |
| Origin | Random motion of atoms and molecules in the material substrate. | Temporal variance of semantic phase in the coherence field . |
| Role | Governs heat transfer, entropy increase, and material stability (e.g., melting, vaporization). | Governs coherence stability, contradiction resolution, and semantic binding forces (e.g., turbulence, collapse). |
| Breakdown Condition | Material failure: melting, vaporization, or structural degradation. | Coherence failure: semantic overload, turbulence, or collapse of meaning structures. |
| Coupling | Sets external thermal boundaries for system operation. | Interacts with T but can destabilize coherence independently of material breakdown. |
| Concept | Classical | Coherence |
|---|---|---|
| Fundamental Quantity | Energy | Coherence-Resolved Energy |
| Disorder Metric | Entropy | Semantic Entropy |
| Intensive Parameter | Temperature | Semantic Temperature |
| Extensive Parameter | Volume | Coherence Volume |
| Work | Force × dx | Restructuring Work |
| Heat Transfer | Conductive | Nonlocal Export |
| Phase States | Solid/Liquid/Gas | Coherent/Incoherent |
| Conservation Law | Energy Conservation | Coherence Conservation |
| Law | Formulation | Interpretation |
|---|---|---|
| Zeroth | Semantic temperature equalizes across coherently coupled systems in equilibrium. | |
| First | Semantic energy changes via semantic heat, entity work, and coherence restructuring work. | |
| Second | Contradiction intensity in a semantic region is reduced by contradiction-resolving work that transfers entropy into surrounding degrees of freedom via dissipative processes; the net entropy of the combined system does not decrease. | |
| Third | , , | As semantic temperature approaches zero, coherence saturates, residual semantic entropy approaches a constant, and random agitation vanishes. |
| Fourth | Coherence fields experience elastic forces from coherence gradients and inertial resistance proportional to information-bearing mass density. |
| Mode | Coherence Quantity | Information Quantity |
|---|---|---|
| (Steady-State) | [Radians] | [J·s] |
| (Thermodynamic) | [J−1] | [J2·s] |
| (Holographic) | [J/(s·m2)] | [·] |
| Domain | Free-energy form |
|---|---|
| Classical thermodynamics | |
| Friston (brain) | |
| Coherence Thermodynamics (C–I) |
| System | Cool, Coherent Interior (C-I Processing) | Hot, Entropic Exterior |
|---|---|---|
| Mammalian brain | Deep structures maintaining stable coherence thermodynamics, buffered thermal core. | Superficial cortex, meningeal and vascular to disspate heat. |
| Sun | Fusion core sustained by C-I work | Multi million kelvin corona as high entropy radiative sink. |
| Black hole | Coherent interior processing information in a high curvature spacetime region. | Hot plasma accretion disk. |
| Dark matter halo | Low entropy central region | Maximal entropy halo. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
