Submitted:
14 July 2025
Posted:
15 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Remote Sensing in Cloud Seeding
1.1.1. Satellite Observations and Technological Developments
1.1.2. Advancements in Geostationary Satellite Capabilities
2. Data and Methodology
2.1. Case Study: Wintertime Cloud Seeding in Targeted Western U.S. Regions
2.2. Advanced Baseline Imager of GOES-R Series
- a)
- Band 2 (0.64 µm) – Red Visible Band
- b)
- Band 3 (0.86 µm) – Vegetation Band
- c)
- Band 5 (1.61 µm) – Snow/Ice Band
- d)
- Band 8 (6.2 µm) – Upper-Level Water Vapor Band
- e)
- Band 9 (6.9 µm) – Mid-Level Water Vapor Band
- f)
- Band 10 (7.3 µm) – Lower-Level Water Vapor Band
- g)
- Band 13 (10.3 µm) – Clean Infrared Window Band
- h)
- Band 14 (11.2 µm) – Infrared Longwave Window Band
- i)
- Band 15 (12.3 µm) – Dirty Window Band
2.3. Cloud Microphysical and Atmospheric Properties
- a)
- Cloud particle size
- b)
- Cloud phase
- c)
- Cloud top temperature
- d)
- Cloud optical depth and thickness
- e)
- Ice and liquid water path
- f)
- Water vapor content
- g)
- Precipitation potential
2.4. Radar Reflectivity
3. Results and Discussion
3.1. Meteorological Criteria for Effective Cloud Seeding
3.2. Site-Specific Variability in Atmospheric Conditions During Cloud Seeding
3.3. Satellite–Radar Analysis of Tahoe Region Cloud Seeding Events
3.3.1. Seeding Event 1: 11 November 2024
- a)
- Satellite Remote Sensing Analysis
- b)
- Radar-Based Analysis
- c)
- Integrated Satellite–Radar Interpretation for Seeding Event 1
3.3.2. Seeding Event 2: 20 February 2024
- a)
- Satellite Remote Sensing Analysis
- b)
- Radar-Based Analysis
- c)
- Integrated Satellite–Radar Interpretation for Seeding Event 2
3.3.3. Seeding Event 3: 1 February 2024
- a)
- Satellite Remote Sensing Analysis
- b)
- Radar-Based Analysis
- c)
- Integrated Satellite–Radar Interpretation for Seeding Event 3
3.3.4. Seeding Event 4: 4 April 2024
- a)
- Satellite Remote Sensing Analysis
- b)
- Radar-Based Analysis
- c)
- Integrated Satellite–Radar Interpretation for Seeding Event 4
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruintjes, R.T. A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull Am Meteorol Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, G.; Jin, D. A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide. Atmos Res. 2006, 79, 183–226. [Google Scholar] [CrossRef]
- Essien, M. Evaluation of cloud seeding techniques for precipitation enhancement. Glob J Clim Stud. 2023, 1, 53–64. [Google Scholar]
- Mehdizadeh, G.; Erfani, E.; McDonough, F.; Hosseinpour, F. Quantifying the influence of cloud seeding on ice-particle growth and snowfall through idealized microphysical modeling. Atmosphere (Basel). 2024, 15, 1460. [Google Scholar] [CrossRef]
- Mehdizadeh, G.; Hosseinpour, F.E.; McDonough, F.; Erfani, E. Studying the mechanistic impacts of cloud seeding on snowfall with insights from a cloud microphysical model [poster]. Graduate Poster Symposium; 2023 Nov; Reno, NV. [CrossRef]
- Yu, X.; Dai, J.; Lei, H.; Xu, X.; Fan, P.; Chen, Z.; et al. Physical effect of cloud seeding revealed by NOAA satellite imagery. Chin Sci Bull. 2005, 50, 45–52. [Google Scholar] [CrossRef]
- Lin, K.I.; Chung, K.S.; Wang, S.H.; Chen, L.H.; Liou, Y.C.; Lin, P.L.; et al. Evaluation of hygroscopic cloud seeding in warm-rain processes by a hybrid microphysics scheme using a WRF model: a real case study. Atmos Chem Phys. 2023, 23, 10423–10438. [Google Scholar] [CrossRef]
- Mehdizadeh, G.; Hosseinpour, F.; Erfani, E.; McDonough, F. Impacts of atmospheric conditions on cloud seeding: a numerical approach. In: AGU Fall Meeting Abstracts; 2024 Dec; San Francisco, CA. Washington (DC): American Geophysical Union; 2024. Abstract A21G-1809.
- Cotton, W.R.; Pielke, R.A. Human Impacts on Weather and Climate. 2nd ed. Cambridge: Cambridge University Press; 2007.
- Flossmann, A.I.; Manton, M.; Abshaev, A.; Bruintjes, R.; Murakami, M.; Prabhakaran, T.; Yao, Z. Review of advances in precipitation-enhancement research. Bull Am Meteorol Soc. 2019, 100, 1465–1480. [Google Scholar] [CrossRef]
- Geerts, B.; Pokharel, B. ; Kristovich DAR. Blowing snow as a natural glaciogenic cloud-seeding mechanism. Mon Weather Rev. 2015, 143, 5017–5033. [Google Scholar]
- Jensen, A.; Watts, A.; Richards, M. DRI unmanned cloud-seeding realizes beyond visual line of sight. Phys.org [Internet]. 2017 Feb 17 [cited 2025 Jul 9]. Available from: https://phys.org/news/2017-02-dri-unmanned-cloud-seeding-visual-line.
- Wu, X.; Yan, N.; Yu, H.; Niu, S.; Meng, F.; Liu, W.; Sun, H. Advances in the evaluation of cloud seeding: statistical evidence for the enhancement of precipitation. Earth Space Sci. 2018, 5, 425–439. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, C.; Huang, Z.; Mai, R.; Lv, F.; Xue, X.; et al. Increase of precipitation by cloud seeding observed from a case study in November 2020 over Shijiazhuang, China. Atmos Res. 2021, 262, 105766. [Google Scholar] [CrossRef]
- Muñoz LMP. Seeding change in weather modification globally. WMO Bull. 2017, 66, 16.
- Silverman, B.A. A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull Am Meteorol Soc. 2001, 82, 903–924. [Google Scholar] [CrossRef]
- United States Government Accountability Office. Cloud Seeding Technology: Assessing Effectiveness and Other Challenges [Internet]. Washington (DC): GAO; 2024. Report No.: GAO-25-107328. [cited 2025 Jul 9]. Available from: https://www.gao. 1073.
- Fajardo, C.; Costa, G.; Sánchez-Fortún, S. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota. Ecotoxicol Environ Saf. 2016, 133, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Bano, H.; Rather, R.A.; Ahmad, S. Cloud seeding: its prospects and concerns in the modern world—a review. Int J Pure Appl Biosci. 2018, 6, 791–796. [Google Scholar] [CrossRef]
- Gholaminejad, A.; Mehdizadeh, G.; Dolatimehr, A.; Arfaeinia, H.; Farjadfard, S.; Dobaradaran, S.; et al. Phthalate esters pollution in the leachate, soil, and water around a landfill near the sea, Iran. Environ Res. 2024, 248, 118234. [Google Scholar] [CrossRef]
- Mehdizadeh, G.; Nikoo, M.R.; Talebbeydokhti, N.; Vanda, S.; Nematollahi, B. Hypolimnetic aeration optimization based on reservoir thermal stratification simulation. J Hydrol. 2023, 625, 130106. [Google Scholar] [CrossRef]
- Birgani, S.A.; Zadeh, S.S.; Davari, D.D.; Ostovar, A. Deep learning applications for analysing concrete surface cracks. Int J Appl Data Sci Eng Health. 2024, 1, 69–84. [Google Scholar]
- Ostovar, A. Comparative Life Cycle Assessment (LCA) of Different Asphalt Emulsion Types [master’s thesis]. Reno (NV): Univ. of Nevada, Reno; 2023.
- Mardi, R.; Ostovar, A. Seismic performance and sustainability of BRB and SMA-braced structures under incremental dynamic analysis. J Sustainabil. 2025, 1(1).
- Ostovar, A.; Davari, D.D.; Dzikuć, M. Determinants of design with multilayer perceptron neural networks: a comparison with logistic regression. Sustainability. 2025, 17, 2611. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, C.; Yang, Y.; Wang, Y.; Sun, Y.; Fan, R. Distinct change of supercooled liquid cloud properties by aerosols from an aircraft-based seeding experiment. Earth Space Sci. 2020, 7, e2020EA001196. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Zhu, Y.; Wang, M.; Zheng, Y.; Goren, T.; Yu, S. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. Science. 2019, 363, eaav0566. [Google Scholar] [CrossRef]
- Yue, Z.; Rosenfeld, D.; Liu, G.; Dai, J.; Yu, X.; Zhu, Y.; et al. Automated mapping of convective clouds (AMCC) thermodynamical, microphysical, and CCN properties from SNPP/VIIRS satellite data. J Appl Meteorol Climatol. 2019, 58, 887–902. [Google Scholar] [CrossRef]
- Anuar SNS, Narashid, R.H.; Razak, T.R.; Hashim, S.; Rahim, A.; Boharsi, S.N. Cloud seeding potential areas from remote sensing of low-level cloud. In: Proc 20th IEEE Int Colloquium on Signal Processing & Its Applications (CSPA); 2024 Mar; Penang, Malaysia. Piscataway (NJ): IEEE; 2024. p. 35-40.
- Rosenfeld, D.; Lensky, I.M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull Am Meteorol Soc. 1998, 79, 2457–2476. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Yu, X.; Dai, J. Satellite-retrieved microstructure of AgI seeding tracks in supercooled layer clouds. J Appl Meteorol. 2005, 44, 760–767. [Google Scholar] [CrossRef]
- Yu, X.; Dai, J.; Rosenfeld, D.; Lei, H.; Xu, X.; Fan, P.; et al. Comparison of model-predicted transport and diffusion of seeding material with NOAA satellite-observed seeding track in supercooled layer clouds. J Appl Meteorol. 2005, 44, 749–759. [Google Scholar] [CrossRef]
- Wang, J.; Yue, Z.; Rosenfeld, D.; Zhang, L.; Zhu, Y.; Dai, J.; et al. Evolution of an AgI cloud-seeding track in central China as seen by a combination of radar, satellite, and disdrometer observations. J Geophys Res Atmos. 2021, 126, e2020JD033914. [Google Scholar] [CrossRef]
- Pagano, T.S.; Durham, R.M. Moderate resolution imaging spectroradiometer (MODIS). In: Sensor Systems for the Early Earth Observing System Platforms. Proc SPIE 1939, 1993. p. 2-17.
- Jin, S.; Gao, C.; Li, J. Atmospheric sounding from Fengyun-3C GPS radio occultation observations: first results and validation. Adv Meteorol. 2019, 2019, 4780143. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, G.; Huang, X.; Miao, C.; Xing, W.; Chen, S.; et al. Improvement and design of transmitter modifier wind cooling protection for CINRAD/CB weather radar. J Geosci Environ Prot. 2018, 6, 139–146. [Google Scholar] [CrossRef]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Oceanic Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Raupach, T.H.; Berne, A. Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference. Atmos Meas Tech. 2015, 8, 343–365. [Google Scholar] [CrossRef]
- Morrison, A.E.; Siems, S.T.; Manton, M.J. On a natural environment for glaciogenic cloud seeding. J Appl Meteorol Climatol. 2013, 52, 1097–1104. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J Meteorol Soc Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Pierce, R.B.; Schaack, T.K.; Otkin, J.A.; Rogal, M.; Bah, K.; et al. Real-time simulation of the GOES-R ABI for user readiness and product evaluation. Bull Am Meteorol Soc. 2016, 97, 245–261. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull Am Meteorol Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Schmit, T.J.; Lindner, B.L.; Jung, J.A.; Gunshor, M.M. GOES-R Advanced Baseline Imager (ABI) spectral bands. J Appl Meteorol. 2005, 44, 1735–1742. [Google Scholar]
- Schmit, T.J.; Lindstrom, S.S.; Gerth, J.J.; Gunshor, M.M. Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J Oper Meteorol. 2018, 6, 33–46. [Google Scholar] [CrossRef]
- Kalluri, S.; Alcala, C.; Carr, J.; Griffith, P.; Lebair, W.; Lindsey, D.; et al. From photons to pixels: processing data from the Advanced Baseline Imager. Remote Sens. 2018, 10, 177. [Google Scholar] [CrossRef]
- Flossmann, A.I.; Wyszogrodzki, A.A.; Jensen, D. Review of advances in precipitation-enhancement research. Bull Am Meteorol Soc. 2019, 100, 1465–1490. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Pavolonis, M.J.; Calvert, C.; Hoffman, J.; Nebuda, S. ; Straka W III, et al. ABI cloud products from the GOES-R series. In: Goodman, S.J.; Schmit, T.J.; Daniels, J.M.; Jamilkowski, M.L.; editors. The GOES-R Series. Amsterdam: Elsevier; 2020. p. 43-62.
- Afzali Gorooh, V.; Kalia, S.; Nguyen, P.; Hsu, K.L.; Sorooshian, S.; Ganguly, S.; et al. Deep neural network cloud-type classification (DeepCTC) model and its application in evaluating PERSIANN-CCS. Remote Sens. 2020, 12, 316. [Google Scholar] [CrossRef]
- Gunshor, M.M.; Schmit, T.J.; Pogorzala, D.; Lindstrom, S.; Nelson, J.P. GOES-R series ABI imagery artifacts. J Appl Remote Sens. 2020, 14, 032411. [Google Scholar]
- Zheng, G.; Brown, C.W.; DiGiacomo, P.M. Retrieval of oceanic chlorophyll concentration from GOES-R Advanced Baseline Imager using deep learning. Remote Sens Environ. 2023, 295, 113660. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R series. Bull Am Meteorol Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Griffith, D.A.; Solak, M.E. The potential use of winter cloud seeding programs to augment the flow of the Colorado River. Colorado White Paper: report to the Upper Colorado River Commission; 2006 Mar.
- Simon, M. Enhancing the weather: governance of weather modification activities in the United States. Wm Mary Environ Law Policy Rev. 2021, 46, 149–207. [Google Scholar]
- Guo, X.; Lin, D.; Wu, F. Analysis of precipitation process and operational precipitation enhancement in Panxi region based on cloud parameters retrievals from China’s next-generation geostationary meteorological satellite FY-4A. Atmosphere (Basel). 2023, 14, 922. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, Y.; Wu, Y.; Cai, M.; Peng, C.; et al. FY-4A measurement of cloud-seeding effect and validation of a catalyst T&D algorithm. Atmosphere (Basel). 2024, 15, 556. [Google Scholar]
- Helder, D.; Doelling, D.; Bhatt, R.; Choi, T.; Barsi, J. Calibrating geosynchronous and polar orbiting satellites: sharing best practices. Remote Sens. 2020, 12, 2786. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M. ABI imagery from the GOES-R series. In: Goodman, S.J.; Schmit, T.J.; Daniels, J.M.; Jamilkowski, M.L.; editors. The GOES-R Series. Amsterdam: Elsevier; 2020. p. 23-34.
- Miller, S.D.; Seaman, C.J.; Rogers, M.A.; Kidder, S.Q. The importance of shortwave-infrared observations for remote sensing of snow and ice properties from space. Remote Sens. 2021, 13, 873. [Google Scholar]
- Schmit, T.J.; Li, J. ; Lee S-J, Li, Z. ; Dworak, R.; Lee Y-K. Legacy atmospheric profiles and derived products from GOES-16: validation and applications. Earth Space Sci. 2019, 6, 1730–1748. [Google Scholar]
- Li, Z.; Xu, J.; Schmit, T.J.; Zhou, X. Observing convective cloud development using GOES-16 ABI: a case study analysis. Atmosphere (Basel). 2021, 12, 1013. [Google Scholar]
- Dror, T.; Chekroun, M.D.; Altaratz, O.; Koren, I. Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function lens. Atmos Chem Phys. 2021, 21, 12261–12272. [Google Scholar] [CrossRef]
- Bah, M.K.; Gunshor, M.M.; Schmit, T.J. Generation of GOES-16 true color imagery without a green band. Earth Space Sci. 2018, 5, 549–558. [Google Scholar] [CrossRef]
- Wimmers, A.; Griffin, S.; Gerth, J.; Bachmeier, S.; Lindstrom, S. Observations of gravity waves with high-pass filtering in the new generation of geostationary imagers and their relation to aircraft turbulence. Weather Forecast. 2018, 33, 139–144. [Google Scholar] [CrossRef]
- Nam, K.; Wang, F.; Yan, K.; Zhu, G. Characteristics and time-series monitoring by GOES-17 of volcano plume on 15 Jan 2022 from Tonga submarine eruption. Geoenviron Disasters. 2023, 10, 1–17. [Google Scholar] [CrossRef]
- Lee, J.R.; Li, J.; Li, Z.; Wang, P.; Li, J. ABI water vapor radiance assimilation in a regional NWP model by accounting for the surface impact. Earth Space Sci. 2019, 6, 1652–1666. [Google Scholar] [CrossRef]
- Miller, N.B.; Gunshor, M.M.; Merrelli, A.J.; L’Ecuyer, T.S.; Schmit, T.J.; Gerth, J.J.; et al. Imaging considerations from a geostationary orbit using the short-wavelength side of the mid-infrared water-vapor absorption band. Earth Space Sci. 2022, 9, e2021EA002080. [Google Scholar] [CrossRef]
- Lensky, I.M.; Rosenfeld, D. Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos Chem Phys. 2008, 8, 6739–6753. [Google Scholar] [CrossRef]
- Peng, J.; Yu, Y. GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for surface albedo. Washington (DC): NOAA; 2020.
- Xu, W. ; Chang F-L, Li, Z. ; Guo, J. Satellite-based retrieval of cloud microphysical properties: recent advances and perspectives. Remote Sens. 2023, 15, 678. [Google Scholar]
- Mayer, B.; Emde, C.; Gasteiger, J. Radiative transfer in cloudy atmospheres: challenges and advances. J Quant Spectrosc Radiat Transf. 2024, 205, 123–145. [Google Scholar]
- Bachmeier, S. Mixed-phase stratiform clouds in an Arctic air mass. CIMSS Satellite Blog [Internet]. 2017 Dec 28 [cited 2025 Jul 9]. Available from: https://cimss.ssec.wisc.
- Harkema, S.; DiGangi, J.P.; Zondlo, M.A. Observations of ice supersaturation and cirrus clouds using a novel water vapor sensor. Atmos Meas Tech. 2021, 14, 1231–1245. [Google Scholar]
- Wang, Y.; Fan, J.; Zhang, R.; Leung, L.R.; Franklin, C. Improving bulk microphysics parameterizations in simulations of aerosol effects. J Geophys Res Atmos. 2024, 119, 4564–4582. [Google Scholar] [CrossRef]
- Mülmenstädt, J.; Sourdeval, O.; Delanoë, J.; Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys Res Lett. 2015, 42, 6502–6509. [Google Scholar] [CrossRef]
- Noh, Y.J.; Seaman, C.J.; Vonder Haar, T.H.; Hudak, D.R.; Rodriguez, P. Comparisons and analyses of aircraft and satellite observations for wintertime mixed-phase clouds. J Geophys Res Atmos. 2011, 116(D18).
- Korolev, A. Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J Atmos Sci. 2007, 64, 3372–3375. [Google Scholar] [CrossRef]
- Costa, A.; Sherwood, S.C.; Renno, N.O. Role of supercooled water in decay of mixed-phase clouds over the Southern Ocean. J Clim. 2017, 30, 6229–6240. [Google Scholar]
- Bedka, K.M.; Minnis, P.; Duda, D.P. Properties of satellite-observed transient tropospheric cooling events associated with overshooting convection. J Appl Meteorol Climatol. 2021, 60, 3–23. [Google Scholar]
- Lindsey, D.T.; Grasso, L.D.; Monette, S. Use of the 1. 38 µm channel for improved thin cirrus detection. J Appl Meteorol Climatol. 2012, 51, 998–1012. [Google Scholar]
- Hillger, D.W.; Kopp, T.J.; Lee, T.F. GOES-14 Super Rapid Scan Operations to prepare for GOES-R. J Appl Remote Sens. 2013, 7, 073462. [Google Scholar]
- Walther, A.; Heidinger, A.K. The IAPP cloud detection and analysis package. J Geophys Res Atmos. 2012, 117(D19).
- Minnis, P.; Harrison, E.F.; Stowe, L.L.; Gibson, G.R.; Denn, F.M.; Doelling, D.R.; et al. Radiative climate forcing by the Mount Pinatubo volcanic eruption. Science. 1995, 270, 75–77. [Google Scholar]
- Minnis, P.; Young, D.F.; Garber, D.P.; Nguyen, L. Cloud optical properties derived from satellite data. J Clim. 2002, 15, 1261–1282. [Google Scholar]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.; et al. The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Kuo, C.P.; Kummerow, C. Merging TEMPEST microwave and GOES-16 geostationary IR soundings for improved water vapor profiles. Atmos Meas Tech. 2024, 17, 5637–5653. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. NCEI radar viewer: composite reflectivity radar image [Internet]. Asheville (NC): NOAA; 2025 [cited 2025 Jul 9]. Available from: https://www.ncei.noaa.
- Tang, J.; Matyas, C.J. High-efficiency weather radar mosaic image generation framework. In: Proc IEEE Int Geosci Remote Sens Symp (IGARSS); 2021 Jul; Brussels, Belgium. Piscataway (NJ): IEEE; 2021. p. 367-9.
- Zhang, J.; Howard, K.; Langston, C.; Vasiloff, S.; Kaney, B.; Arthur, A.; et al. National Mosaic and Multi-Sensor QPE (NMQ) system: description, results, and future plans. Bull Am Meteorol Soc. 2011, 92, 1321–1333. [Google Scholar] [CrossRef]
- Geerts, B.; Miao, Q.; Yang, Y.; Rasmussen, R.; Breed, D. An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J Atmos Sci. 2010, 67, 3286–3302. [Google Scholar] [CrossRef]
- Breed, D.; Rasmussen, R.; Weeks, C.; Boe, B.; Deshler, T. Evaluating winter orographic cloud seeding: design of the Wyoming Weather Modification Pilot Project. J Appl Meteorol Climatol. 2014, 53, 282–299. [Google Scholar] [CrossRef]
- Langerud, D.W.; Boe, B.A.; Keyes CG, Jr. How to implement a cloud-seeding program. In: Guidelines for Cloud Seeding to Augment Precipitation. Reston (VA): ASCE; 2016. p. 163-89.
- NOAA STAR. GOES-West – sector view: Pacific Southwest [Internet]. College Park (MD): NOAA/NESDIS Center for Satellite Applications and Research; accessed 2025 Jul 6. Available from: https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G18§or=psw.










| Channel Number | Central Wavelength (µm) | Type | Highest Spatial Resolution (km) | Cloud Property to Detect |
|---|---|---|---|---|
| 2 | 0.64 | Visible (Red Band) | 0.5 | Cloud optical depth and thickness, Ice and liquid water path |
| 3 | 0.86 | Near-Infrared | 1 | Cloud particle size, Cloud optical depth and thickness |
| 5 | 1.6 | Near-Infrared | 1 | Cloud phase, Cloud particle size |
| 8 | 6.2 | Infrared (Water Vapor) | 2 | Water vapor content |
| 9 | 6.9 | Infrared (Water Vapor) | 2 | Water vapor content |
| 10 | 7.3 | Infrared (Water Vapor) | 2 | Water vapor content |
| 13 | 10.3 | Infrared (Window) | 2 | Cloud phase, Cloud top temperature, Ice and liquid water path |
| 14 | 11.2 | Infrared (Window) | 2 | Cloud top temperature, Precipitation potential |
| 15 | 12.3 | Infrared (Window) | 2 | Ice and liquid water path, Precipitation potential |
| Location | Date | Air Temperature | RH | Wind Direction | Wind Speed | Wind Gust |
|---|---|---|---|---|---|---|
| (ºC) | (%) | (deg) | (mph) | (mph) | ||
| Ruby | 16-Feb-25 | -1 | 94 | 224 | 5 | 11 |
| 13-Jan-24 | -1 | 79 | 190 | 13 | 18 | |
| 3-Jan-24 | -1 | 94 | 268 | 4 | 7 | |
| 2-Jan-24 | 0 | 56 | 198 | 2 | 7 | |
| Santa Rosa | 1-Mar-24 | -2 | 57 | 195 | 5 | 13 |
| 13-Jan-24 | -1 | 88 | 213 | 7 | 16 | |
| 3-Jan-24 | 4 | 73 | 230 | 2 | 8 | |
| 2-Jan-24 | 2 | 65 | 337 | 2 | 5 | |
| Tahoe | 16-Feb-25 | -1 | 96 | 208 | 12 | 21 |
| 11-Nov-24 | -2 | 96 | 235 | 14 | 24 | |
| 20-Feb-24 | -3 | 96 | 195 | 13 | 17 | |
| 4-Apr-24 | -6 | 91 | 223 | 14 | 29 | |
| 1-Feb-24 | -3 | 96 | 195 | 10 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
