Submitted:
07 July 2025
Posted:
07 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Essential Oil Yields and Chemical Composition
2.2. Antioxidant Activity
2.3. Antifungal Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction
4.3. GC-FID and GC-MS Analysis
4.4. Antioxidant Activity Assays
4.5. Antifungal Activity
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fragkouli, R.; Antonopoulou, M.; Asimakis, E.; Spyrou, A.; Kosma, C.; Zotos, A. , Tsiamis, G.; Patakas, A., Triantafyllidis V. Mediterranean plants as potential source of biopesticides: An Overview of current research and future trends. Metabolites 2023, 13, 967. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.; Kalitina, V.; Romanova, D.; Engel, A. Methods for detection of pathogens of cereal crops. Informatics Economics Management 2024, 3, 418–446. [Google Scholar]
- Resmi, A.R.; Kanhirala, H. Plant diseases: Causes and symptoms. Plant pathology and plant diseases 2024, 16. [Google Scholar]
- Hadi, N.J.; Khalid, W.I. Efficiency of Rosemary Rosmarinus officinalis and chitosan in controlling the damping off pathogen, Fusarium spp. Identified morphologically and molecularly. In IOP Conf. Series: Earth and Environmental Science, 2023; Volume 1262, 032017.
- Achimón, F.; Brito, V. D.; Pizzolitto, R. P.; Sanchez, A. R.; Gómez, E. A.; Zygadlo, J. A. Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Rev. Argent. Microbiol. 2021, 53, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Khaskheli, M.A.; Nizamani, M.M.; Tarafder, E.; Das, D.; Nosheen, S.; Muhae-Ud-Din, G.; Khaskheli, R.A.; Ren, M.J.; Wang, Y.; Yang, S.W. Sustainable management of major fungal phytopathogens in Sorghum (Sorghum bicolor L.) for food security: A comprehensive review. J. Fungi 2025, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.; Wariyo, A.; Hilu, G. Antifungal activities of some essential oils against Fusarium oxysporum of Rosemary and Sage Plants. Adv. Crop. Sci. Tech. 2019, 7, 419. [Google Scholar] [CrossRef]
- Moumni, M.; Allagui, M.B.; Mezrioui, K.; Ben Amara, H.; Romanazzi, G. Evaluation of seven essential oils as seed treatments against seedborne fungal pathogens of Cucurbita maxima. Molecules 2021, 26, 2354. [Google Scholar] [CrossRef] [PubMed]
- Eddardaki, F. E.; Benoutman, A.; Ettakifi, H.; Legssyer, M.; Saidi, R.; Lamrani, Z.; da Silva, J.C.G.E.; Maouni, A. Phytochemical composition, antioxidant and antifungal activity of essential oils and crude extracts of Dittrichia viscosa maritime (L.), an aromatic and medicinal plant from Northern Morocco. Multidiscip. Sci. J. 2024, 6, 2024182–2024182. [Google Scholar] [CrossRef]
- Hendel, N.; Sarri, D.; Sarri, M.; Napoli, E.; Palumbo, P.A.; Ruberto, G. Phytochemical analysis and antioxidant and antifungal activities of powders, methanol extracts, and essential oils from Rosmarinus officinalis L. and Thymus ciliatus Desf. Benth. Int. J. Mol. Sci. 2024, 25, 7989. [Google Scholar] [CrossRef] [PubMed]
- Akachoud, O.; Bouamama, H.; Facon, N.; Laruelle, F.; Zoubi, B.; Benkebboura, A.; Ghoulam, C.; Qaddoury, A.; Lounès-Hadj Sahraoui, A. Mycorrhizal inoculation improves the quality and productivity of essential oil distilled from three aromatic and medicinal plants: Thymus satureioides, Thymus pallidus, and Lavandula dentata. Agronomy 2022, 12, 2223. [Google Scholar] [CrossRef]
- Sempere-Ferre, F.; Asamar, J.; Castell, V.; Roselló, J.; Santamarina, M.P. Evaluating the antifungal potential of botanical compounds to control Botryotinia fuckeliana and Rhizoctonia solani. Molecules 2021, 26, 2472. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, H.A.; Ibourki, M.; Hamdouch, A.; Oubannin, S.; Asbbane, A.; Hallouch, O.; Bijla, L.; Koubachi, J.; Majourhat, K.; Gharby, S. Moroccan aromatic and medicinal plants: A review of economy, ethnobotany, chemical composition, and biological activities of commonly used plants. Food and Humanity 2024, 2, 100259. [Google Scholar] [CrossRef]
- Ciobotaru, G.V.; Goje, I.D.; Dehelean, C.A.; Danciu, C.; Magyari-Pavel, I.Z.; Moacă, E.A.; Muntean, D.; Imbrea, I.M.; Sărăteanu, V.; Pop, G. Analysis of the antioxidant and antimicrobial activity, cytotoxic, and anti-migratory properties of the essential oils obtained from cultivated medicinal Lamiaceae species. Plants 2025, 14, 846. [Google Scholar] [CrossRef] [PubMed]
- Soulaimani, B. Comprehensive review of the combined antimicrobial activity of essential oil mixtures and synergism with conventional antimicrobials. Nat. Prod. Commun. 2025, 20, 1–22. [Google Scholar] [CrossRef]
- Ben Miri, Y. Essential Oils: Chemical composition and diverse biological activities: A comprehensive review. Nat. Prod. Commun. 2025, 20, 1–29. [Google Scholar] [CrossRef]
- Mifsud, B.; Prior, L.D.; Williamson, G.J.; Corigliano, J.; Hansen, C.; Van Pelt, R.; Pearce, S.; Greenwood, T.; Bowman, D.M. Tasmania’s giant eucalypts: Discovery, documentation, macroecology and conservation status of the world’s largest angiosperms. Aust. J. Bot. 2025, 73, BT23088. [Google Scholar]
- Medeiros, P.L.d.; Pimenta, A.S.; Miranda, N.d.O.; Melo, R.R.d.; Amorim, J.d.S.; Azevedo, T.K.B. The myth that Eucalyptus trees deplete soil water—A Review. Forests 2025, 16, 423. [Google Scholar] [CrossRef]
- Khvorost, O.; Oproshanska, T.; Skrebtsova, K.; Fedchenkova, Y.; Rudnik, A. Eucalyptus-based products range as an example of modern approaches to the creation of herbal drugs. Annals of Mechnikov’s Institute 2025, 1, 17–24. [Google Scholar]
- Altememmi, N.J.; ALjudy, N.J.; ALzubaid, L.A. Chemical analysis of volatile oils in Eucalyptus species by GC mass. Ibn al-Haitham j. pure appl. sci. 2025, 38, 84–98. [Google Scholar]
- Lin, Z.; An, S.; Zhou, C.; Chen, Y.; Gao, Z.; Feng, J.; Lin, H.; Xun, P.; Yu, W. Effects of Eucalyptus essential oil on growth, immunological indicators, disease resistance, intestinal morphology and gut microbiota in Trachinotus ovatus. Microorganisms 2025, 13, 537. [Google Scholar] [CrossRef] [PubMed]
- Gölükcü, M.; Çınar, O.; Tokgöz, H.; Bayar, F. U.; Özek, T. Effect of different drying methods and distillation times on essential oil composition and antioxidant content of Rosemary. Akad. Gida 2024, 22, 186–194. [Google Scholar] [CrossRef]
- Raffo, A.; Baiamonte, I.; De Benedetti, L.; Lupotto, E.; Marchioni, I.; Nardo, N.; Cervelli, C. Exploring volatile aroma and non-volatile bioactive compounds diversity in wild populations of rosemary (Salvia rosmarinus Schleid.). Food Chem. 2023, 404, 134532. [Google Scholar] [CrossRef] [PubMed]
- Mina, S.A.; Bishr, M.M.; Hassan, H.M.; Abdel-Khalik, S.M. Influence of ethephon and soil treatments on the essential oil composition of sweet fennel and its biological activities. Sci. Rep. 2024, 14, 30609. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Sulaiman, G.M.; Khan, R.A.; Amin, M.A.; Albukhaty, S.; Elshibani, F.A.; Almahmoud, S.A. , Al-Kuraishy, H.M. Factors affecting the accumulation and variation of volatile and non-volatile constituents in rosemary, Rosmarinus officinalis L. J. Appl. Res. Med. Aromat. Plants 2024, 42, 100571. [Google Scholar]
- Dragumilo, A.; Pejčev, R. Đ.; Božić, D.; Sarić-Krsmanović, M.; Vrbničanin, S.; Rajković, M.; Marković, T. Impact of synthetic films and organic mulches on yield and quality of Mentha piperita L. essential oil. Ind. Crops Prod. 2025, 224, 120356. [Google Scholar] [CrossRef]
- Benissa, Z.; Dumas, F.; Fakhfakh, N.; Zouari, S. Chemical variability and antioxidant activities of spontaneous and cultivated Rosmarinus officinalis essential oils according to the geographical origin of their exploited organs. J. Essent. Oil Res. 2024, 36, 67–78. [Google Scholar] [CrossRef]
- Shyaula, S.L.; Ghimire, M.; Maharjan, S.; Gurung, K. Optimisation of essential oil extraction of Lindera neesiana from supercritical carbon dioxide fluid and comparison to steam and simultaneous distillation extraction. Flavour Fragr. J. 2025, 40, 267–277. [Google Scholar] [CrossRef]
- El Abdali, Y.; Agour, A.; Allali, A.; Bourhia, M.; El Moussaoui, A.; Eloutassi, N.; Salamatullah, A.M.; Alzahrani, A.; Ouahmane, L.; Aboul-Soud, M.A.M. Lavandula dentata L. Phytochemical analysis, antioxidant, antifungal and insecticidal activities of its essential oil. Plants 2022, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Dris, D.; Tine-Djebbar, F.; Soltani, N. Lavandula dentata essential oils: Chemical composition and larvicidal activity against Culiseta longiareolata and Culex pipiens (Diptera: Culicidae). Afr. Entomol. 2017, 25, 387–394. [Google Scholar] [CrossRef]
- Dammak, I.; Hamdi, Z.; El Euch, S.K.; Zemni, H.; Mliki, A.; Hassouna, M.; Lasram, S. Evaluation of antifungal and anti-ochratoxigenic activities of Salvia officinalis, Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 1,8-cineole against Aspergillus carbonarius. Ind. Crops Prod. 2019, 128, 85–93. [Google Scholar] [CrossRef]
- Wagner, L.S.; Sequin, C.J.; Foti, N.; Campos-Soldini, M.P. Insecticidal, fungicidal, phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatal. Agric. Biotechnol. 2021, 35, 102092. [Google Scholar]
- Belcadi, H.; Aknouch, A.; El amrani, S.; Chraka, A.; Kassout, J.; Lachkar, M.; Mouhib, M.; Ibn Mansour, A. Moroccan Lavandula dentata L. essential oil: γ-irradiation effect on the chemical composition and antibacterial activity. Sci. Afr. 2024, 23, e02087–1. [Google Scholar] [CrossRef]
- Golkar, P.; Mosavat, N.; Hossein, J.S.A. Essential oils, chemical constituents, antioxidant, antibacterial and in vitro cytotoxic activity of different Thymus species and Zataria multiflora collected from Iran. S. Afr. J. Bot. 2020, 130, 250–258. [Google Scholar] [CrossRef]
- de Oliveira, A.A.; França, L.P.; Ramos, A.S.; Ferreira, J.L.P.; Maria, A.C.B.; Oliveira, K.M.T.; Earle, S.A. Jr; da Silva, J.N.; Branches, A.D.S.; Barros, G.A.; da Silva, N.G.; Tadei, W.P.; Amaral, A.C.F.; de Andrade, S.J.R. Larvicidal, adulticidal and repellent activities against Aedes aegypti L. of two commonly used spices, Origanum vulgare L. and Thymus vulgaris L. S. Afr. J. Bot. 2021, 140, 17–24. [Google Scholar] [CrossRef]
- Pavela, R.; Žabka, M.; Vrchotová, N.; Tříska, J. Effect of foliar nutrition on the essential oil yield of Thyme (Thymus vulgaris L.). Ind. Crops Prod. 2018, 112, 762–765. [Google Scholar] [CrossRef]
- Dinu, M.V.; Gradinaru, A.C.; Lazar, M.M.; Dinu, I.A.; Raschip, I.E.; Ciocarlan, N.; Aprotosoaie, A.C. Physically cross-linked chitosan/dextrin cryogels entrapping Thymus vulgaris essential oil with enhanced mechanical, antioxidant and antifungal properties. Int. J. Biol. Macromol. 2021, 184, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Bayar, Y.; Akşit, H. Chemical components of rosemary (Rosmarinus officinalis) essential oil and in vitro fumigant activity in storage diseases. Adv. food sci. 2022, 44, 119–123. [Google Scholar]
- Çınar, O.; Tokgöz, H.; Gölükcü, M.; Bayar, U.F. Quality parameters variation of rosemary (Rosmarinus officinalis L.) essential oil with respect to harvesting time and location. J.I.S.T. 2022, 11, 1114–1123. [Google Scholar]
- Rathore, S.; Mukhia, S.; Kapoor, S.; Bhatt, V.; Kumar, R.; Kumar, R. Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci. Rep. 2022, 12, 3305. [Google Scholar] [CrossRef] [PubMed]
- Ben Marzoug, H.N.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Romdhane, M. Eucalyptus (gracilis, oleosa, salubris, and salmonophloia) essential oils: Their chemical composition and antioxidant and antimicrobial activities. J. Med. Food 2010, 13, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.; Kefi, S.; Tabben, O.; Ayed, A.; Jallouli, S.; Feres, N.; Hammami, M.; Khammassi, S.; Hrigua, I.; Nefisi, S.; Sghaier, A.; Limam, F.; Elkahoui, S. Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Ind. Crops Prod. 2018, 124, 115–125. [Google Scholar] [CrossRef]
- Siramon, P.; Ohtani, Y.; Ichiura, H. Chemical composition and antifungal property of Eucalyptus camaldulensis leaf oils from Thailand. Rec. Nat. Prod. 2013, 7, 49–53. [Google Scholar]
- Dogan, G.; Kara, N.; Bagci, E.; Gur, S. Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis. Z. Naturforsch. C. J. Biosci. 2017, 72, 483–489. [Google Scholar]
- Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; Jabbar, A. Chemical composition and in-vitro evaluation of the antimicrobial and antioxidant activities of essential oils extracted from seven Eucalyptus species. Molecules 2015, 20, 20487–20498. [Google Scholar] [CrossRef] [PubMed]
- Pauzer, M.S.; Borsato, T.O.; Almeida, V.P.; Raman, V.; Justus, B.; Pereira, C.B.; Flores, T.B.; Maia, B.H.L.N.S.; Meneghetti, E.K.; Kanunfre, C.C.; Paula, J.F.P.; Farago, P.V.; Budel, J.M. Eucalyptus cinerea: Microscopic profile, chemical composition of essential oil and its antioxidant, microbiological and cytotoxic activities. Braz. Arch. Biol. Technol. 2021, 64, e21200772. [Google Scholar] [CrossRef]
- Malaspina, P.; Papaianni, M.; Ranesi, M.; Polito, F.; Danna, C.; Aicardi, P.; Cornara, L.; Woo, S.L.; De Feo, V. Eucalyptus cinerea and E. nicholii by-products as source of bioactive compounds for agricultural applications. Plants 2022, 11, 2777. [Google Scholar] [CrossRef] [PubMed]
- Tum, P.K.; Kasha, G.M.; Kithure, J.G.; Mwazighe, F.M. Optimization of essential oil extraction from Eucalyptus grandis leaves by clevenger distillation. Journal kenya chemical society 2016, 9, 91–102. [Google Scholar]
- Khedhri, S.; Polito, F.; Caputo, L.; De Feo, V.; Khamassi, M.; Kochti, O.; Hamrouni, L.; Mabrouk, Y.; Nazzaro, F.; Fratianni, F.; Amri, I. Chemical composition, antibacterial properties, and anti-enzymatic effects of Eucalyptus essential oils sourced from Tunisia. Molecules 2023, 28, 7211. [Google Scholar] [CrossRef] [PubMed]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M. L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ayed, A.; Polito, F.; Mighri, H.; Souihi, M.; Caputo, L.; Hamrouni, L.; Amri, I.; Nazzaro, F.; De Feo, V.; Hirsch, A.M.; Mabrouk, Y. Chemical composition of essential oils from eight Tunisian Eucalyptus species and their antifungal and herbicidal activities. Plants 2023, 12, 3068. [Google Scholar] [CrossRef] [PubMed]
- Amri, I.; Khammassi, M.; Ben Ayed, R.; Khedhri, S.; Mansour, M.B.; Kochti, O.; Pieracci, Y.; Flamini, G.; Mabrouk, Y.; Gargouri, S.; Hanana, M.; Hamrouni, L. Essential oils and biological activities of Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. Plants 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, A.W.; Kanemaru, M.Y.S.; de Souza, F.G.; Duarte, M.C.T.; de Andrade, C.J.; Pastore, G.M. Enhanced antimicrobial and antioxidant capacity of Thymus vulgaris, Lippia sidoides, and Cymbopogon citratus emulsions when combined with mannosylerythritol a lipid biosurfactant. Food Res. Int. 2023, 163, 112213. [Google Scholar] [CrossRef] [PubMed]
- Tardugno, R.; Serio, A.; Purgatorio, C.; Savini, V.; Paparella, A.; Benvenuti, S. Thymus vulgaris L. essential oils from Emilia Romagna Apennines (Italy): Phytochemical composition and antimicrobial activity on food-borne pathogens. Nat. Prod. Res. 2020, 1–6.
- Moazeni, M.; Davari, A.; Shabanzadeh, S.; Akhtari, J.; Saeedi, M.; Mortyeza-Semnani, K.; Abastabar, M.; Nabili, M.; Moghadam, F.H.; Roohi, B.; Kelidari, H.; Nokhodchi, A. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J. Herb. Med. 2021, 28, 100452. [Google Scholar] [CrossRef]
- Chahboun, N.; Barrahi, A.; Koursaoui, L.; Mortada, S.; Fahsi, K.; Flouchi, R.; Karrouchi, K.; Faouzi, M.E.A.; El Faydy, M.; Abuelizz, H.A.; Thakur, A. , Fikri-Benbrahim, K.; Zarrouk, A. Chemical composition, biological activities, and anti-corrosion performance of Moroccan essential oil Thymus vulgaris from the Oued Amlil region, Taza. Int. J. Electrochem. Sci. 2024, 19, 100859. [Google Scholar] [CrossRef]
- Justus, B.; de Almeida, V.P.; Gonçalves, M.M.; de Assunção, D.P.S.F.; Borsato, D.M.; Arana, A.F.M.; Maia, B.H.L.N.S.; de Paula, J.F.P.; Budel, J.M.; Farago, P.V. Chemical composition and biological activities of the essential oil and anatomical markers of Lavandula dentata L. cultivated in Brazil. Braz. Arch. Biol. Technol. 2018, 61, e18180111. [Google Scholar] [CrossRef]
- Touati, B.; Chograni, H.; Hassen, I.; Boussaid, M.; Toumi, L.; Ben Brahim, N. Chemical composition of the leaf and flower essential oils of Tunisian Lavandula dentata L. (Lamiaceae). Chem. Biodivers. 2011, 8, 1560–1569. [Google Scholar] [CrossRef]
- Dridi, I.; Haouel-Hamdi, S.; Cheraief, I.; Mediouni, B.J.J.; Landoulsi, A.; Chaouch, R. Essential oil from flowering tops of Lavandula dentata (L): Chemical composition, antimicrobial, antioxidant and insecticidal activities. J. Essent. Oil-Bear. Plants 2021, 24, 632–647. [Google Scholar]
- Msaada, K.; Salem, N.; Tammar, S.; Hammami, M.; Saharkhiz, M.J.; Debiche, N.; Limam, F.; Marzouk, B. Essential oil composition of Lavandula dentata, L. stoechas and L. multifida cultivated in Tunisia. J. Essent. Oil-Bear. Plants 2012, 15, 1030–1039. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: a systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Micić, D.; Ðurović, S.; Riabov, P.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Dojčinović, B.; Božović, R.; Jovanović, D.; Blagojević, S. Rosemary essential oils as a promising source of bioactive compounds: Chemical composition, thermal properties, biological activity, and gastronomical perspectives. Foods 2021, 10, 2734. [Google Scholar] [CrossRef] [PubMed]
- Belaid, S.; Gonzalez-Coloma, A.; Andres, M. F.; Elfalleh, W.; Idoudi, S.; Romdhane, M.; Saadaoui, E. Exploring chemical profiles, antifeedant, nematicidal, and phytotoxic potentials of seven essential oils from Eucalyptus species. Chem. Biodivers. 2025, e202402960. [Google Scholar] [CrossRef] [PubMed]
- Hindi, S. 1, 8-Cineole extracted from Eucalypt ecotypes’ leaves: I. a novel mi-2 crowave-assisted steam distillation method (MASD); Its uploading 3 into natural polymeric encapsules for pest control. Preprints 2025, 2025031324.
- Chaves, T.P.; Pinheiro, R.E.E.; Melo, E.S.; Soares, M.J.S.; Souza, J.S.N.; de Andrade, T.B.; de Lemos, T.L.G.; Coutinho, H.D.M. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Ind. Crops Prod. 2018, 112, 70–74. [Google Scholar] [CrossRef]
- Caetano, A.R.S.; Chalfoun, S.M.; Resende, M.L.V.; Angélico, C.L.; Santiago, W.D.; Magalhães, M.L.; Rezende, D.A.C.S.; Soares, L.I.; Nelson, D.L.; Cardoso, M.G. Chemical characterization and determination of in vivo and in vitro antifungal activity of essential oils from four Eucalyptus species against the Hemileia vastatrix Berk and Br fungus, the agent of coffee leaf rust. Aust. J. Crop Sci. 2020, 14, 1379–1384. [Google Scholar] [CrossRef]
- Elgat, W.A.A.A.; Kordy, A.M.; Böhm, M.; Cerný, R.; Abdel-Megeed, A.; Salem, M.Z.M. Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis essential oils as antifungal activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes 2020, 8, 1–16. [Google Scholar] [CrossRef]
- Khubeiz, M.J.; Mansour, G.; Zahraa, B. Chemical compositions and antimicrobial activity of leaves Eucalyptus camaldulensis essential oils from four Syrian samples. International journal of current pharmaceutical review and research 2016, 7, 251–257. [Google Scholar]
- Asiaei, E.O.; Moghimipour, E.; Fakoor, M.H. Evaluation of antimicrobial activity of Eucalyptus camaldulensis essential oil against the growth of drug-resistant bacteria. Jundishapur J. Nat. Pharm. Prod. 2017, 13, e65050. [Google Scholar] [CrossRef]
- Diriye, M.A.; Ali, M.M.; Ishag, O.A.; Mohamed, M.A. Chemical composition and antimicrobial activity of essential oils extracted from Eucalyptus camaldulensis leaves grown in Sudan. Red Sea University Journal of Basic and Applied Science 2017, 2, 244–253. [Google Scholar]
- Gakuubi, M.M.; Maina, A.W.; Wagacha, J.M. Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Int. J. Microbiol. 2017, 2017, 1–17. [Google Scholar]
- Ez-zriouli, R.; El Yacoubi, H.; Mouhssine, F.; Zadni, F.Z.; Ouaritini, Z.B.; Rochdi, A. Chemical composition of essential oil of Eucalyptus camaldulensis collected from forest Moroccan and determination their antifungal activity on two phytopathogenic fungi. Plant Cell Biotechnol. Mol. Biol. 2019, 20, 770–777. [Google Scholar]
- Chahomchuen, T.; Insuan, O.; Insuan, W. Chemical profile of leaf essential oils from four Eucalyptus species from Thailand and their biological activities. Microchem. J. 2020, 158, 105248. [Google Scholar] [CrossRef]
- Posgay, M.; Greff, B.; Kapcsándi, V.; Lakatos, E. Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review. Heliyon 2022, 8, e10812. [Google Scholar] [CrossRef] [PubMed]
- Oubannin, S.; Asbbane, A.; Bijla, L.; Ait Bouzid, H.; Gagour, J.; Hallouch, O.; Sakar, E.H.; Gharby, S. Co-processed [Argania spinosa L. (Skeels)] oil with thyme (Thymus vulgaris L.) leaves—New product optimization. Food Chem. Adv. 2023, 3, 100474. [Google Scholar]
- Pilozo, G.; Villavicencio-Vásquez, M.; Chóez-Guaranda, I.; Murillo, D.V.; Pasaguay, C.D.; Reyes, C. T, Maldonado-Estupiñán, M.; Ruiz-Barzola, O.; León-Tamariz, F.; Manzano P. Chemical, antioxidant, and antifungal analysis of oregano and thyme essential oils from Ecuador: Effect of thyme against Lasiodiplodia theobromae and its application in banana rot. Heliyon 2024, 10, e31443. [Google Scholar] [CrossRef] [PubMed]
- Khan, H. Characterization of 1,8-Cineole (Eucalyptol) from Myrtle and its potential antibacterial and antioxidant activities. Karbala Int. J. Mod. Sci. 2025, 11, 199–207. [Google Scholar] [CrossRef]
- Al-Maharik, N.; Jaradat, N.; Hawash, M.; Al-Lahham, S.; Qadi, M.; Shoman, I.; Jaber, S.; Rahem, R.A.; Hussein, F.; Issa, L. Chemical composition, antioxidant, antimicrobial and anti-proliferative activities of essential oils of Rosmarinus officinalis from five different sites in Palestine. Separations 2022, 9, 339. [Google Scholar] [CrossRef]
- Eid, A.M.; Jaradat, N.; Issa, L.; Abu-Hasan, A.; Salah, N.; Dalal, M.; Mousa, A.; Zarour, A. Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus officinalis) essential oil and its nanoemulgel. Eur. J. Integr. Med. 2022, 55, 102175. [Google Scholar] [CrossRef]
- Ruas, A.; Graça, A.; Marto, J.; Gonçalves, L.; Oliveira, A.; da Silva, A.N.; Pimentel, M.; Moura, A.M.; Serra, A.T.; Figueiredo, A.C.; Ribeiro, H.M. Chemical characterization and bioactivity of commercial essential oils and hydrolates obtained from Portuguese forest logging and thinning. Molecules 2022, 27, 3572. [Google Scholar] [CrossRef] [PubMed]
- Kouki, H.; Amri, I.; Souihi, M.; Pieracci, Y.; Trabelsi, I.; Hamrouni, L.; Flamini, G.; Hirsch, A.M.; Mabrouk, Y. Chemical composition, antioxidant, herbicidal and antifungal activities of leaf essential oils from three Tunisian Eucalyptus species. J. Plant Dis. Prot. 2023, 1–13. [Google Scholar] [CrossRef]
- Polito, F.; Fratianni, F.; Nazzaro, F.; Amri, I.; Kouki, H.; Khammassi, M.; Hamrouni, L.; Malaspina, P.; Cornara, L.; Khedhri, S.; Romano, B.; Maresca, D.C.; Ianaro, A.; Ercolano, G.; De Feo, V. Essential oil composition, antioxidant activity and leaf micromorphology of five Tunisian Eucalyptus species. Antioxidants 2023, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Limam, H.; Ben Jemaa, M.; Tammar, S.; Ksibi, N.; Khammassi, S.; Jallouli, S.; Del Re, G. , Msaada, K. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind. Crops Prod. 2020, 158, 112964. [Google Scholar] [CrossRef]
- Sadraoui Ajmi, I.; Sadraoui, R.; Guesmi, F.; Soltani, A.; Amari, R.; Chaib, S.; Boushih, E.; Fajraoui, A. , Mediouni Ben Jemâa, J. Chemical composition, antioxidant and antimicrobial activities of Eucalyptus cinerea essential oil with its insecticidal effect against Ceratitis capitata adults. Int. J. Environ. Res. 2023, 17, 47. [Google Scholar] [CrossRef]
- Martins, G.A.; Bicas, J.L. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Braz. J. Food Technol. 2024, 27, e2023071. [Google Scholar] [CrossRef]
- Kumar, D.; Ansari, A.; Bajpai, A.B.; Rai, N.; Kumar, N. Thymus vulgaris L. (Thyme): A herbal remedy against fungal infections. Environ. Conserv. J. 2025, 26, 219–225. [Google Scholar] [CrossRef]
- Yu, J. Chemical composition of essential oils and their potential. Applications in postharvest storage of cereal grains. Molecules 2025, 30, 683. [Google Scholar] [CrossRef] [PubMed]
- Aksit, H.; Bayar, Y.; Simsek, S.; Ulutas, Y. Chemical composition and antifungal activities of the essential oils of Thymus species (Thymus pectinatus, Thymus convolutus, Thymus vulgaris) against plant pathogens. J. Essent. Oil-Bear. Plants 2022, 25, 200–207. [Google Scholar] [CrossRef]
- Fonseca-Guerra, I.R.; Posada, A.M.V.; Rozo, M.E.B.; Pineda, M.E.B. Essential oils of thyme (Thymus vulgaris) and oregano (Origanum vulgare) as an alternative for the control of pesticide-resistant Fusarium spp. in quinoa seeds. J. Sci. Food Agric. 2025, 15, 2236–2245. [Google Scholar] [CrossRef] [PubMed]
- Bounar, R.; Krimat, S.; Boureghda, H.; Dob, T. Chemical analyses, antioxidant and antifungal effects of oregano and thyme essential oils alone or in combination against selected Fusarium species. Int. Food Res. J. 2020, 27, 66–77. [Google Scholar]
- Divband, K.S.; Hojjatollah Khosravi, A.R. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains. Microb. Pathog. 2017, 104, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Mehdizadeh, L. Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in Iran against some plant pathogenic fungi. J. Essent. Oil-Bear. Plants 2020, 23, 1072–1083. [Google Scholar] [CrossRef]
- Harčárová, M.; Čonková, E.; Proškovcová, M.; Váczi, P.; Marcinčáková, D.; Bujňák, L. Comparison of antifungal activity of selected essential oils against Fusarium graminearum in vitro. Ann. Agric. Environ. Med. 2021, 28, 414–418. [Google Scholar] [CrossRef] [PubMed]
- ElYacoubi, H.; Ait-Haddou, S.; Ben-Yahya, G.; Ez-Zriouli, R.; Riyahi, J.; Rochdi, A. Chemical composition and antifungal activity of Rosmarinus officinalis essential oil against four pathogenic fungi (Fusarium oxysporum, Fusarium culmorum, Fusarium poae and Helminthosporium sativum) of wheat in Morocco. Acta Fytotech. Zootech. 2024, 27, 234–240. [Google Scholar] [CrossRef]
- Ben Kaab, S.; Rebey, I.B.; Hanafi, M.; Berhal, C.; Fauconnier, M.L.; De Clerck, C.; Ksouri, R.; Jijakli, H. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res. 2019, 17, e1006. [Google Scholar] [CrossRef]
- Hussein, K.A.; Lee, Y.D.; Joo, J.H. Effect of rosemary essential oil and Trichoderma koningiopsis T-403 VOCs on pathogenic fungi responsible for ginseng root rot disease. J. Microbiol. Biotechnol. 2020, 30, 1018. [Google Scholar] [CrossRef] [PubMed]
- Tomazoni, E.Z.; Pauletti, G.F.; Ribeiro, R.T.S.; Moura, S. , Schwambach J. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci. Hortic. 2017, 223, 72–77. [Google Scholar] [CrossRef]
- Umereweneza, D.; Muhizi, T.; Kamizikunze, T.; Nkurunziza, J.P. Chemical composition and antifungal activity of essential oils extracted from Leaves of Eucalyptus melliodora and Eucalyptus anceps grown in Rwanda. J. Essent. Oil-Bear. Plants 2019, 22, 151–158. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of essential oil components by gas chromatography/ mass spectrometry, 4th ed.; Allured Publ, Carol Stream, 2007.
- Hamdeni, I.; Slim, S.; Sanaa, A.; Louhaichi, M.; Boulila, A.; Bettaieb, T. Rosemary essential oil enhances culture establishment and inhibits contamination and enzymatic browning: Applications for in vitro propagation of Aloe vera L. S. Afr. J. Bot. 2022, 147, 1199–1205. [Google Scholar] [CrossRef]
- Hamdeni, I.; Yangui, I.; Sanaa, A.; Slim, S.; Louhaichi, M.; Messaoud, C.; Boulila, A.; Bettaieb, T. Aloe vera L. (Asphodelaceae): Supplementation of in-vitro culture medium with Aloe vera gel for production of genetically stable plants. S. Afr. J. Bot. 2022, 147, 1206–1213. [Google Scholar] [CrossRef]
| Yield percentage (%) | ||||||||||||||
| Lamiaceae | Myrtaceae | |||||||||||||
| No | Componds | Formula | RI | A | B | C | D | E | F | G | H | I | J | |
| 1 | Tricyclene | C10H16 | 923 | 0.1 | 0.29 | 0.016 | - | - | - | 0.012 | - | 0.575 | 0.08 | |
| 2 | α-Thujene | C10H16 | 927 | 0.02 | 0.11 | 1.005 | 0.052 | 0.005 | - | 0.018 | 0.383 | - | - | |
| 3 | α-Pinene | C10H16 | 936 | 4.35 | 14.42 | 0.951 | 19.199 | 8.16 | 31.96 | 12.69 | 8.054 | 18.2 | 4.381 | |
| 4 | Camphene | C10H16 | 950 | 0.49 | 7.86 | 0.358 | 0.242 | 0.23 | 0.546 | 0.23 | 0.211 | 3.9 | 0.136 | |
| 5 | Thuja-2,4(10)-diene | C10H14 | 955 | 0.3 | - | - | 0.112 | 0.06 | 0.435 | 0.15 | 0.056 | 0.019 | 0.062 | |
| 6 | Sabinene | C10H16 | 973 | - | 0.06 | 0.007 | - | - | 1.04 | - | - | 0.01 | - | |
| 7 | β-Pinene | C10H16 | 977 | 12.52 | 5.8 | 0.154 | 0.469 | 0.067 | 0.627 | 0.18 | 0.361 | 0.1 | 0.238 | |
| 8 | 1-Octen-3-ol | C8H16O | 980 | 0.02 | - | 0.02 | - | - | 0.036 | 0.009 | - | 0.073 | 0.027 | |
| 9 | Myrcene | C10H16 | 989 | 0.48 | 1.17 | 1.6 | 0.229 | 0.027 | 0.062 | 0.024 | 0.393 | 0.032 | 0.029 | |
| 10 | α-Phellandrene | C10H16 | 1004 | 0.18 | 0.25 | 0.345 | 1.168 | 0.132 | 0.107 | 0.09 | 3.185 | 0.096 | 0.089 | |
| 11 | 3-Carene | C10H16 | 1011 | - | 0.15 | 0.227 | - | - | 0.014 | - | - | 0.052 | - | |
| 12 | α-Terpinene | C10H16 | 1017 | 0.14 | 0.42 | 1.638 | 0.128 | - | 0.03 | - | 0.111 | 0.032 | - | |
| 13 | p-Cymene | C10H14 | 1024 | 1.63 | 4.86 | 7.112 | 7.190 | 2.528 | 12.82 | 2.15 | 10.844 | 29.37 | 1.863 | |
| 14 | 1,8-Cineole | C10H18O | 1031 | 61.8 | 40.75 | 0.136 | 66.473 | 82.753 | 39.627 | 60.74 | 62.95 | 24.36 | 86.261 | |
| 15 | γ-Terpinene | C10H16 | 1059 | 0.17 | 0.69 | 7.879 | 0.382 | 0.11 | 0.116 | 0.093 | 0.218 | 0.9 | 0.138 | |
| 16 | cis-Linalool oxide | C10H18O2 | 1075 | 0.02 | 0.05 | 0.185 | - | - | 0.012 | - | - | 0.15 | - | |
| 17 | α-Terpinolene | C10H16 | 1086 | 0.07 | 0.23 | 0.138 | 0.179 | 0.048 | 0.045 | - | 0.094 | 0.17 | 0.022 | |
| 18 | p-Cymenene | C10H12 | 1087 | 0.12 | - | - | - | - | 0.053 | 0.035 | - | 0.2 | - | |
| 19 | o-Guaiacol | C7H8O2 | 1092 | 0.08 | - | - | - | - | - | 0.11 | - | 0.15 | - | |
| 20 | α-Pinene oxide | C10H16O | 1097 | 0.1 | - | - | - | 0.015 | - | - | - | - | ||
| 21 | trans-Sabinene hydrate | C10H18O | 1098 | 0.05 | - | - | - | - | - | - | - | 0.019 | - | |
| 22 | Linalool | C10H18O | 1099 | 1.2 | 0.15 | 0.719 | - | - | - | - | - | 0.16 | - | |
| 23 | endo-Fenchol | C10H18O | 1115 | 0.2 | 0.08 | - | 0.032 | 0.169 | 0.108 | 0.175 | 0.085 | 2.32 | 0.054 | |
| 24 | α-Campholenal | C10H16O | 1124 | 0.02 | 0.025 | - | 0.021 | 0.024 | 0.282 | - | 0.016 | 0.017 | 0.017 | |
| 25 | trans-rose oxide | C10H18O | 1128 | 0.35 | 0.035 | - | - | - | - | 0.097 | - | - | - | |
| 26 | trans-Sabinol | C10H16O | 1139 | 0.03 | - | - | - | 0.971 | - | - | 0.713 | 3.64 | - | |
| 27 | trans-Pinocarveol | C10H16O | 1140 | 2.1 | - | 0.007 | 0.525 | - | 4.149 | - | - | - | 0.532 | |
| 28 | Camphor | C10H16O | 1143 | 0.6 | 7.87 | 0.006 | - | - | 0.286 | 15.2 | - | 0.34 | - | |
| 29 | Pinocarvone | C10H14O | 1160 | 0.6 | 0.07 | - | 0.097 | 0.241 | 2.059 | - | 0.142 | 1.21 | 0.116 | |
| 30 | Borneol | C10H18O | 1166 | 0.7 | 0.01 | 0.773 | 0.072 | 0.354 | 0.597 | 3.14 | 0.084 | 4.23 | 0.057 | |
| 31 | Lavandulol | C10H18O | 1168 | 0.2 | - | - | - | - | - | 0.56 | 0.058 | - | 0.06 | |
| 32 | Terpinen-4-ol | C10H18O | 1177 | 0.9 | 4.21 | 0.583 | 0.052 | 0.25 | 0.179 | 0.084 | 0.32 | - | - | |
| 33 | Cryptone | C9H14O | 1183 | 0.5 | 0.52 | - | 0.464 | - | - | 0.123 | - | - | - | |
| 34 | p-Cymen-8-ol | C10H14O | 1184 | 0.04 | - | - | - | - | 0.296 | - | - | - | - | |
| 35 | α-Terpineol | C10H18O | 1189 | 0.16 | 0.06 | - | 0.48 | 0.743 | 0.159 | 0.244 | 0.54 | 1.96 | 0.133 | |
| 36 | Myrtenol | C10H16O | 1194 | 1.76 | 1.18 | - | - | - | 0.477 | 0.435 | - | 0.34 | 0.851 | |
| 37 | Verbenone | C10H14O | 1206 | 1.17 | - | - | 0.038 | - | 0.233 | 0.32 | 0.036 | - | - | |
| 38 | trans-carveol | C10H16O | 1217 | 0.17 | - | - | - | - | 0.11 | - | - | 0.023 | - | |
| 39 | cis-carveol | C10H16O | 1226 | 0.07 | 0.004 | - | 0.011 | 0.018 | 0.089 | 0.079 | 0.009 | 0.13 | 0.022 | |
| 40 | Citronellol | C10H20O | 1228 | 0.13 | - | - | - | - | 0.061 | - | - | 0.14 | 0.1 | |
| 41 | Pulegone | C10H16O | 1234 | - | - | - | 0.035 | 0.068 | 0.038 | 0.192 | 0.049 | 0.1 | 0.092 | |
| 42 | Cumin aldehyde | C10H12O | 1237 | 0.11 | - | - | 0.018 | 0.073 | 0.339 | 0.09 | 0.027 | 0.096 | 0.016 | |
| 43 | Piperitone | C10H16O | 1253 | 0.15 | - | - | - | - | 0.1 | 0.033 | 0.006 | - | - | |
| 44 | Geranial | C10H16O | 1270 | 0.015 | - | 0.056 | - | - | - | - | - | - | - | |
| 45 | Phellandral | C10H16O | 1274 | - | - | - | - | - | 0.02 | - | - | 0.009 | - | |
| 46 | Citronellyl formate | C11H20O2 | 1276 | 0.022 | - | - | - | - | - | - | - | - | - | |
| 47 | Bornyl acetate | C12H20O2 | 1283 | - | 0.76 | - | - | - | - | - | - | - | - | |
| 48 | p-Cymen-7-ol | C10H14O | 1287 | 0.01 | - | - | - | - | 0.018 | - | - | - | - | |
| 49 | Thymol | C10H14O | 1290 | - | - | 72.376 | - | - | - | - | 0.015 | - | - | |
| 50 | Carvacrol | C10H14O | 1300 | 0.02 | 0.03 | - | - | - | 0.018 | 0.014 | - | 0.035 | 0.003 | |
| 51 | p-vinylguaiacol | C9H10O2 | 1317 | 0.07 | 0.006 | - | - | - | 0.044 | 0.022 | - | 0.056 | - | |
| 52 | Myrtenyl acetate | C12H18O2 | 1328 | 0.005 | - | - | - | - | - | - | - | 0.006 | - | |
| 53 | Linalool propanoate | C13H22O2 | 1336 | 0.01 | - | - | - | 0.01 | - | - | 0.025 | 0.015 | 0.015 | |
| 54 | Piperitenone | C10H14O | 1340 | 0.1 | - | - | - | - | - | - | - | 0.014 | - | |
| 55 | α-Terpinyl acetate | C12H20O2 | 1347 | 0.01 | 0.007 | - | 1.404 | 2.718 | 0.022 | 0.008 | 0.028 | 0.02 | - | |
| 56 | α-Cubebene | C15H24 | 1351 | 0.03 | 0.009 | - | - | - | - | - | 1.153 | 0.009 | 0.01 | |
| 57 | cis-Carvyl acetate | C12H18O2 | 1362 | 0.01 | - | - | - | - | - | - | - | 0.09 | - | |
| 58 | α-Ylangene | C15H24 | 1369 | 0.01 | - | - | - | - | - | - | 0.093 | 0.43 | 0.018 | |
| 60 | Carvacrol acetate | C12H16O2 | 1373 | - | 0.012 | - | - | - | - | - | - | - | - | |
| 61 | α-Copaene | C15H24 | 1376 | 0.03 | 0.095 | - | - | - | - | - | - | 0.01 | - | |
| 62 | β-Cubebene | C15H24 | 1386 | 0.02 | - | - | - | - | - | - | - | 0.04 | - | |
| 63 | β-Elemene | C15H24 | 1390 | - | - | - | - | - | - | - | 0.068 | - | 0.019 | |
| 64 | Methyl eugenol | C11H14O2 | 1401 | - | 0.011 | - | - | - | - | - | - | - | 0.018 | |
| 65 | α-Gurjunene | C15H24 | 1408 | 0.01 | 0.02 | - | - | - | - | 0.009 | 0.05 | - | 0.314 | |
| 66 | E-Caryophyllene | C15H24 | 1420 | 0.28 | 6.047 | 2.31 | - | 0.026 | 0.012 | 0.029 | 1.243 | 0.39 | 0.033 | |
| 67 | β-Cedrene | C15H24 | 1422 | 0.04 | - | - | - | - | - | 0.006 | 0.093 | - | 0.044 | |
| 68 | β-Gurjunene | C15H24 | 1431 | 0.2 | 0.06 | - | - | 0.02 | 0.048 | 0.397 | 0.372 | - | 0.791 | |
| 69 | Aromadendrene | C15H24 | 1440 | - | - | - | 0.262 | - | 0.03 | - | - | 0.17 | - | |
| 70 | α-Himachalene | C15H24 | 1445 | 0.19 | 0.66 | - | - | 0.007 | 0.018 | - | 0.469 | - | 0.053 | |
| 71 | α-Humulene | C15H24 | 1453 | 0.19 | 0.02 | 0.103 | - | - | 0.028 | - | - | - | 0.288 | |
| 72 | α-Patchoulene | C15H24 | 1457 | - | - | - | 0.084 | - | - | 0.084 | - | 0.07 | - | |
| 73 | γ-Gurjunene | C15H24 | 1472 | - | - | - | - | - | - | 0.009 | 0.056 | 0.024 | ||
| 74 | γ-Muurolene | C15H24 | 1476 | - | 0.08 | - | - | - | - | 0.004 | 0.041 | 0.028 | 0.027 | |
| 75 | Ar-Curcumene | C15H22 | 1482,2 | 0.96 | 0.01 | - | 0.009 | - | - | 0.017 | 0.053 | 0.1 | 0.044 | |
| 76 | α-Amorphene | C15H24 | 1482,4 | - | 0.02 | - | - | - | - | - | - | - | - | |
| 77 | Valencene | C15H24 | 1491 | 0.09 | 0.03 | - | 0.011 | 0.018 | 0.033 | 0.079 | 2.612 | - | 1.119 | |
| 78 | β-Bisabolene | C15H24 | 1508 | 0.01 | 0.05 | - | - | - | - | - | 0.074 | 0.02 | - | |
| 79 | β-Curcumene | C15H24 | 1512 | 0.01 | - | - | - | - | - | - | 0.02 | 0.013 | ||
| 80 | γ-Cadinene | C15H24 | 1513 | 0.35 | 0.11 | - | - | - | - | - | - | 0.05 | 0.015 | |
| 81 | δ-Cadinene | C15H24 | 1523 | 0.26 | 0.15 | - | - | - | - | - | 0.019 | 0.17 | 0.011 | |
| 82 | (E)-γ-Bisabolene | C15H24 | 1532 | 0.01 | - | - | - | - | - | - | - | - | ||
| 83 | α-Calacorene | C15H20 | 1540 | 0.74 | 0.003 | - | - | 0.015 | 0.076 | 0.007 | 0.025 | 0.48 | - | |
| 84 | Germacrene B | C15H24 | 1550 | - | - | - | - | - | - | - | - | - | 0.078 | |
| 85 | β-Calacorene | C15H20 | 1559 | 0.11 | 0.004 | - | 0.031 | - | 0.028 | 0.087 | 0.056 | 0.08 | - | |
| 86 | Ledol | C15H26O | 1566 | - | - | - | 0.027 | - | - | 0.1 | 0.171 | 0.051 | 0.1 | |
| 87 | Spathulenol | C15H24O | 1576 | - | - | - | 0.039 | 0.01 | 0.619 | 0.27 | 1.113 | 0.23 | 0.19 | |
| 88 | Caryophyllene oxide | C15H24O | 1580 | 0.28 | 0.194 | 0.456 | 0.026 | 0.1 | 0.63 | 1.403 | 0.11 | - | ||
| 89 | Globulol | C15H26O | 1581 | - | - | - | 0.215 | - | - | - | - | 0.723 | ||
| 90 | epi-Globulol | C15H26O | 1584 | 0.06 | - | - | 0.1 | 0.012 | 0.064 | 0.33 | 0.805 | 0.02 | 0.39 | |
| 91 | Humulene epoxide II | C15H24O | 1604 | 0.05 | 0.028 | 0.007 | - | - | 0.076 | 0.09 | 0.073 | 0.07 | 0.125 | |
| 92 | 10-epi-γ-Eudesmol | C15H26O | 1618 | 0.03 | - | - | - | - | 0.1 | 0.016 | - | 0.44 | 0.01 | |
| 93 | epi-1-Cubenol | C15H26O | 1625 | 0.02 | - | - | - | 0.016 | 0.058 | 0.019 | - | 0.29 | - | |
| 94 | γ-Eudesmol | C15 H26O | 1630 | - | 0.012 | 0.012 | - | - | 0.034 | - | 0.073 | 0.02 | ||
| 95 | α-Muurolol | C15H26O | 1642 | 0.02 | - | - | - | - | - | 0.008 | - | 0.017 | - | |
| 96 | β-Eudesmol | C15H26 O | 1650 | 0.27 | - | - | 0.012 | - | 0.172 | 0.079 | 0.011 | 0.047 | ||
| 97 | α-Cadinol | C15H26O | 1651 | 0.08 | 0.007 | - | - | 0.026 | - | - | - | - | ||
| 98 | Caryophyllenol II | C15H24O | 1659 | 0.037 | 0.022 | - | - | - | - | - | - | - | ||
| 99 | β-Bisabolol | C15H26O | 1672 | 0.05 | 0.008 | 0.023 | - | - | - | 0.022 | - | - | ||
| 100 | α-Bisabolol | C15H26O | 1682 | 0.017 | - | - | - | - | 0.009 | - | - | - | - | |
| 101 | Eudesma-4(15),7-dien-1b-ol | C15H24O | 1688 | 0.16 | - | - | - | - | - | - | - | - | ||
| 102 | (2Z,6E)-Farnesol | C15H26O | 1722 | 0.008 | - | - | - | - | - | - | - | - | ||
| 103 | Chamazulene | C14H16 | 1726 | 0.006 | - | - | - | - | - | 0.029 | - | 0.007 | ||
| 104 | α-Sinensal | C15H22O | 1753 | 0.46 | - | - | - | - | - | 0.015 | - | 0.004 | ||
| 105 | 2-Heptadecanone | C17H34O | 1903 | 0.029 | 0.005 | - | - | - | - | - | - | - | ||
| 106 | Methyl hexadecanoate | C17H34O2 | 1924 | - | 0.007 | - | - | - | - | - | ||||
| * Yield (w/w %) | 3.6 ±0.3g | 0.66 ± 0.05b | 2.7 ± 0.3f | 1.94 ± 0.1e |
1.45 ± 0.25d | 0.18 ± 0.06a | 1.45 ± 0.04d |
1.17 ± 0.3c |
0.53 ± 0.08b |
1.33 ± 0.1cd | ||||
| Monoterpene hydrocarbons % | 20.57 | 36.31 | 21.44 | 29.34 | 11.36 | 47.85 | 15.63 | 23.91 | 53.65 | 7.02 | ||||
| Oxygenated monoterpenes % | 72.67 | 54.52 | 74.84 | 67.85 | 85.67 | 49.25 | 81.43 | 65.05 | 39.95 | 88.31 | ||||
| Sesquiterpene hydrocarbons % | 2.69 | 7.35 | 2.4 | 0.39 | 0.07 | 0.17 | 0.82 | 6.41 | 1.48 | 2.81 | ||||
| Oxygenated sesquiterpenes % | 2.28 | 0.27 | 0.5 | 0.42 | 0.07 | 1.19 | 1.72 | 3.82 | 1.96 | 1.6 | ||||
| Non-terpene derivatives % | 0.97 | 1.34 | 0.02 | 1.86 | 2.75 | 0.11 | 0.11 | 0.1 | 0.19 | 0.12 | ||||
| Total identified % | 99,18 | 99,79 | 99,2 | 99,86 | 99,92 | 98,57 | 99,71 | 99,29 | 97,23 | 99.86 | ||||
| Essential oils | IC50 (µg mL-1) | |
|---|---|---|
| DPPH | ABTS | |
| Lavandula dentata | 765.26 ±141.05f | 102.5 ±1.7h |
| Salvia rosmarinus | 42.32 ±3.06ab | 7 ±0.2b |
| Thymus vulgaris | 3.06 ±0.04a | 1.5 ±0.08a |
| Eucalyptus camaldulensis | 100.1 ±6.2bc | 10.8 ±0.8c |
| Eucalyptus cinerea | 200.5 ±4.1d | 4.2 ±0.6ab |
| Eucalyptus grandis | 190.7 ±2.6d | 16.6 ±3.2d |
| Eucalyptus lehmannii | 562.4 ±49.1e | 31.7 ±1.4f |
| Eucalyptus leucoxylon | 164.08 ±25.78cd | 24.3 ±4.1e |
| Eucalyptus saligna | 18.5 ±1ab | 5 ±0.9ab |
| Eucalyptus sideroxylon | 502 ±90.9e | 45.3 ±2.4g |
| Trolox | 22.26 ±1.2ab | 33.73 ±2.8f |
| Growth inhibition pourcentage (I%) | |||||||
| Essential oil | Dose (µL mL-1) | Fusarium oxysporum | Fusarium proliferatum | Fusarium culmorum | Rhizoctonia solani | Phoma sp. | Sclerotinia sclerotiorum |
| Lavandula dentata | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 28,26 ±3,8bA | 29,55 ±3,9bA | 36,96 ±6,8bAB | 45,10 ±6,8bBC | 49,02 ±12,2aC | 50,98 ±13,6bC | |
| 4 | 45,65 ±3,8cA | 50 ±3,9cA | 45,65 ±3,8bA | 74,12 ±6,2cC | 64,31 ±5,6bB | 80,39 ±15,1cC | |
| 6 | 56,52 ±10dA | 60 ±1,6dA | 77,83 ±1,3cB | 81,96 ±5,3dB | 74,90 ±1,4cB | 96,08 ±6,8dC | |
| 8 | 80 ±2eA | 69,55 ±3,4eA | 92,61 ±12,8dB | 100 ±0eB | 94,12 ±10,2dB | 100 ±0dB | |
| 10 | 100 ±0fB | 73,64 ±1,6eA | 100 ±0dB | 100 ±0eB | 100 ±0eB | 100 ±0dB | |
| 12 | 100 ±0f | 100 ±0f | 100 ±0d | 100 ±0e | 100 ±0e | 100 ±0d | |
| Fongicide | 100 ±0f | 100 ±0f | 100 ±0d | 100 ±0e | 100 ±0e | 100 ±0d | |
| MIC | (µL mL-1) | 10 | 12 | 10 | 10 | 8 | 8 |
| MFC | (µL mL-1) | > 12 | > 12 | > 12 | > 12 | > 12 | > 12 |
| Salvia rosmarinus | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0 a | 0 ±0 a |
| 2 | 57,61 ±4,6bAB | 63,86 ± 2,9bBC | 54,35 ± 9,2bA | 79,41 ± 4,2bD | 67,65 ± 4,2bC | 94,12 ± 8,3bE | |
| 4 | 73,91 ±9,2cA | 79,55 ± 9,6cAB | 81,74 ± 1,8cAB | 94,12 ± 8,3cC | 84,71 ± 1,7cB | 100 ±0cC | |
| 6 | 77,83 ± 1,8cA | 80,91 ± 1,9 cA | 93,48 ± 9,2dB | 100 ±0dB | 94,12 ± 8,3dB | 100 ±0cB | |
| 8 | 100 ±0d | 100 ±0d | 100 ±0e | 100 ±0d | 100 ±0e | 100 ±0c | |
| 10 | 100 ±0d | 100 ±0d | 100 ±0e | 100 ±0d | 100 ±0e | 100 ±0c | |
| 12 | 100 ±0d | 100 ±0d | 100 ±0e | 100 ±0d | 100 ±0e | 100 ±0c | |
| Fongicide | 100 ±0d | 100 ±0d | 100 ±0e | 100 ±0d | 100 ±0e | 100 ±0c | |
| MIC | (µL mL-1) | 8 | 8 | 8 | 6 | 8 | 4 |
| MFC | (µL mL-1) | > 12 | > 12 | > 12 | 8 | > 12 | 10 |
| Thymus vulgaris | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| 4 | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| 6 | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| 8 | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| 10 | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| 12 | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| Fongicide | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | 100 ±0b | |
| MIC | (µL mL-1) | 2 | 2 | 2 | 2 | 2 | 2 |
| MFC | (µL mL-1) | 6 | 2 | 2 | 2 | > 12 | 12 |
| E. camaldulensis | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 32,61 ±3,7bB | 36,36 ±3,9bB | 10,87 ±7,5bA | 17,65 ±5,8bA | 85,49 ±2,9bC | 11,76 ±5,8bA | |
| 4 | 58,7 ±13,5cBC | 65,91 ±6,8cC | 36,96 ±13,5cA | 47,45 ±5,9cAB | 96,08 ±6,7cD | 100 ±0cD | |
| 6 | 75,22 ±4,7dA | 95,45 ±7,8dB | 75,22 ±2,2dA | 79,61 ±17,7dA | 100 ±0cB | 100 ±0cB | |
| 8 | 80,43 ±7deA | 100 ±0dB | 80,87 ±4,5dA | 100 ±0eB | 100 ±0cB | 100 ±0cB | |
| 10 | 86,96 ±3eA | 100 ±0dB | 100 ±0eB | 100 ±0eB | 100 ±0cB | 100 ±0cB | |
| 12 | 100 ±0f | 100 ±0d | 100 ±0e | 100 ±0e | 100 ±0c | 100 ±0c | |
| Fongicide | 100 ±0f | 100 ±0d | 100 ±0e | 100 ±0e | 100 ±0c | 100 ±0c | |
| MIC | (µL mL-1) | 12 | 8 | 10 | 8 | 6 | 4 |
| MFC | (µL mL-1) | > 12 | > 12 | 12 | 10 | > 12 | 4 |
| E. cinerea | 0 | 0 ±0a | 0 ±0 a | 0 ±0 a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 47,83 ±2,61bA | 55,91 ±2,8bB | 45,65 ±1,9bA | 62,35 ±2,3bC | 66,27 ±1,8bC | 82,35 ±2,35bD | |
| 4 | 53,04 ±3,45cA | 62,27 ±3,4cB | 59,13 ±4,1cB | 73,33 ±1,8cC | 69,02 ±1,8cC | 100 ±0cD | |
| 6 | 59,57 ±4,7dA | 75,45 ±1,3dC | 70,43 ±3,2dB | 91,37 ±2,9dD | 70,59 ±1,1cBC | 100 ±0cE | |
| 8 | 63,91 ±4,1dA | 82,27 ±2,7eC | 73,91 ±1,3dB | 100 ±0eD | 74,90 ±1,8dB | 100 ±0cD | |
| 10 | 72,61 ±1,3eA | 100 ±0fC | 100 ±0eC | 100 ±0eC | 78,43 ±1,8eB | 100 ±0cC | |
| 12 | 76,09 ±2,72eA | 100 ±0fB | 100 ±0eB | 100 ±0eB | 100 ±0fB | 100 ±0cB | |
| Fongicide | 100 ±0f | 100 ±0f | 100 ±0e | 100 ±0e | 100 ±0f | 100 ±0c | |
| MIC | (µL mL-1) | > 12 | 10 | 10 | 8 | 12 | 4 |
| MFC | (µL mL-1) | > 12 | > 12 | 12 | > 12 | > 12 | 6 |
| E. grandis | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 26,09 ±3,77bC | 38,64 ±6,82bD | 8,7 ±3bB | 0 ±0aA | 75,29 ±1,18bE | 0 ±0aA | |
| 4 | 52,17 ±7,53cB | 61,36 ±3,94cC | 23,04 ±2,26cA | 29,41 ±5,88bA | 81,18±2,35cD | 100 ±0bE | |
| 6 | 54,35 ±11,3cA | 68,64 ±2,36dB | 56,52 ±4,58dA | 68,63 ± 8,99cB | 85,49±2,96dC | 100 ±0bD | |
| 8 | 58,7 ±4,98cA | 80,91 ±6,25eB | 63,04 ±3,77eA | 87,45 ±4,75dB | 100 ±0eC | 100 ±0bC | |
| 10 | 78,26 ±3,77dB | 100 ±0fC | 73,91 ±1,3fA | 100 ±0eC | 100 ±0eC | 100 ±0bC | |
| 12 | 80,43 ±6,5dA | 100 ±0fB | 100 ±0gB | 100 ±0eB | 100 ±0eB | 100 ±0bB | |
| Fongicide | 100 ±0e | 100 ±0f | 100 ±0g | 100 ±0e | 100 ±0e | 100 ±0b | |
| MIC | (µL mL-1) | > 12 | 10 | 12 | 10 | 8 | 4 |
| MFC | (µL mL-1) | > 12 | > 12 | > 12 | 10 | > 12 | 6 |
| E. lehmannii | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 23,91 ±3,8bB | 21,82 ±3,4bB | 19,57 ±10bB | 0 ±0aA | 0 ±0aA | 62,75 ±3,4bC | |
| 4 | 32,61 ±3,8bD | 36,36 ±3,9cD | 26,09 ±3,8bcC | 9,80 ±3,4bB | 0 ±0aA | 75,69 ±1,4cE | |
| 6 | 60,87 ±13cC | 53,64 ±4,9dC | 34,78 ±6,5cB | 91,37 ±7,6cD | 0 ±0aA | 100 ±0dD | |
| 8 | 65,22 ±3,8cdC | 58,18 ±1,6dB | 67,39 ±6,5dC | 100 ±0dD | 17,65 ±5,9bA | 100 ±0dD | |
| 10 | 71,74 ±7,5dB | 65,91 ±6,8eB | 73,04 ±1,5deB | 100 ±0dC | 37,25 ±3,4cA | 100 ±0dC | |
| 12 | 71,74 ±3,8dB | 76,36 ±3,4fB | 80,43 ±2,6eB | 100 ±0dC | 41,18±11,8cA | 100 ±0dC | |
| Fongicide | 100 ±0 e | 100 ±0 g | 100 ±0 f | 100 ±0 d | 100 ±0 d | 100 ±0 d | |
| MIC | (µL mL-1) | > 12 | > 12 | > 12 | 8 | > 12 | 6 |
| MFC | (µL mL-1) | > 12 | > 12 | > 12 | 10 | > 12 | 6 |
| E. leucoxylon | 0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 49,13 ±1,3bA | 58,64 ±2bB | 49,57 ±1,9bA | 59,22 ±1,8bB | 73,73±2,96bC | 82,35 ±2,3bD | |
| 4 | 59,13 ±4,19cB | 64,55 ±3,6cB | 55,22 ±2,7cA | 75,69 ±1,8cC | 78,43 ±0,68cC | 100 ±0cD | |
| 6 | 64,35 ±1,9dB | 65,91 ±2,7cB | 60,43 ±1,9dA | 76,47 ±3,1cC | 85,1 ±1,36dD | 100 ±0cE | |
| 8 | 68,26 ±2,7deA | 67,27 ±1,3cA | 64,78 ±2,6dA | 85,1 ±2,9dB | 86,27±2,45dB | 100 ±0cC | |
| 10 | 70 ±2,6eA | 100 ±0dB | 73,48 ±5,4eA | 100 ±0eB | 100 ±0eB | 100 ±0cB | |
| 12 | 76,52 ±3,4fB | 100 ±0dC | 73,48 ±1,9eA | 100 ±0eC | 100 ±0eC | 100 ±0cC | |
| Fongicide | 100 ±0g | 100 ±0d | 100 ±0f | 100 ±0e | 100 ±0e | 100 ±0c | |
| MIC | (µL mL-1) | > 12 | 10 | >12 | 10 | 10 | 4 |
| MFC | (µL mL-1) | > 12 | > 12 | >12 | > 12 | > 12 | 4 |
|
E. saligna |
0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 73,04 ±1,5bAB | 69,55 ±3,4bA | 73,04 ±1,5aAB | 95,69 ±7,5bC | 78,43 ±1,8bB | 100 ±0bC | |
| 4 | 78,26 ±2cAB | 75,91 ±6,3bcA | 85,22 ±1,5bC | 100 ±0bD | 81,18 ±1,2bBC | 100 ±0bD | |
| 6 | 95,65 ±7,5dB | 82,73 ±5,2cA | 92,17 ±6,8cB | 100 ±0bB | 96,47 ±6,1cB | 100 ±0bB | |
| 8 | 100 ±0d | 95 ±8,7d | 100 ±0d | 100 ±0b | 100 ±0c | 100 ±0b | |
| 10 | 100 ±0d | 100 ±0d | 100 ±0d | 100 ±0b | 100 ±0c | 100 ±0b | |
| 12 | 100 ±0d | 100 ±0d | 100 ±0d | 100 ±0b | 100 ±0c | 100 ±0b | |
| Fongicide | 100 ±0d | 100 ±0d | 100 ±0d | 100 ±0b | 100 ±0c | 100 ±0b | |
| MIC | (µL mL-1) | 8 | 10 | 8 | 4 | 8 | 2 |
| MFC | (µL mL-1) | > 12 | > 12 | > 12 | > 12 | > 12 | 2 |
|
E. sideroxylon |
0 | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a | 0 ±0a |
| 2 | 57,83 ±3,28bA | 63,18 ±1,36bB | 58,26 ±2,61bA | 60,78 ±3,4bAB | 79,61±0,68bC | 100 ±0bD | |
| 4 | 72,61 ±8,5cAB | 77,73 ±1,57cB | 76,09 ±1,99cB | 68,24 ±1,18cA | 87,06 ±2,04cC | 100 ±0bD | |
| 6 | 80,43 ±6,5dBC | 85,45 ±0,79dC | 78,7 ±0,75cdAB | 73,73 ±2,96dA | 100 ±0dD | 100 ±0bD | |
| 8 | 81,74 ±1,3dAB | 86,36 ±2,73dB | 80,43 ±1,3dA | 92,94 ±6,2eC | 100 ±0dD | 100 ±0bD | |
| 10 | 83,91 ±0,75dB | 90,91 ±2,08eC | 80,87 ±0,75dA | 100 ±0fD | 100 ±0dD | 100 ±0bD | |
| 12 | 85,22 ±1,5dA | 91,36 ±2,84eB | 85,65 ±2,26eA | 100 ±0fC | 100 ±0dC | 100 ±0bC | |
| Fongicide | 100 ±0e | 100 ±0f | 100 ±0f | 100 ±0 f | 100 ±0d | 100 ±0b | |
| MIC | (µL mL-1) | > 12 | > 12 | > 12 | 10 | 6 | 2 |
| MFC | (µL mL-1) | > 12 | > 12 | > 12 | > 12 | > 12 | 4 |
| Species | Used part | Harvesting period | Site |
| Lavandula dentata | Aerial parts |
April 2023 | Chbedda, Ben Arous |
| Salvia rosmarinus | Korbous, Nabeul | ||
| Thymus vulgaris | July 2023 | Krib, Siliana | |
| Eucalyptus camaldulensis | Leaves | Mach 2023 | Zarniza arboreta, Sejnane |
| Eucalyptus cinerea | Souinet arboreta, Ain Draham | ||
| Eucalyptus grandis | Zarniza arboreta, Sejnane | ||
| Eucalyptus lehmannii | Souinet arboreta, Ain Draham | ||
| Eucalyptus leucoxylon | Korbous arboreta, Nabeul | ||
| Eucalyptus saligna | Zarniza arboreta, Sejnane | ||
| Eucalyptus sideroxylon | Korbous arboreta, Nabeul |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
