Submitted:
24 June 2025
Posted:
25 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Insects Rearing
2.2. Mortality of R. nu Caused by Matrine® (Bioassay 1)
2.3. Impact of Matrine® over the Pupae of Trichogramma pretiosum (Bioassay 2)
2.4. Impact of Dry Residue of MatrineTM to Adults of Trichogramma pretiosum (Bioassay 3)
2.5. Statistical Analysis
3. Results
3.1. Mortality of R. nu Caused by MatrineTM (Bioassay 1)
3.2. Impact of Matrine® over the Pupae of Trichogramma pretiosum (Bioassay 2)
3.3. Impact of Dry Residue of MatrineTM to Adults of Trichogramma pretiosum (Bioassay 3)
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Barbut, J. Révision du genre Rachiplusia Hampson, 1913 (Lepidoptera, Noctuidae, Plusiinae). Bull. Soc. Entomol. Fr. 2008, 113, 445–452. [CrossRef]
- Alves, J.S., Pasqualotto, L., Soares, V.N., Souza, M.T., Souza, M.T., Rakes, M., Horikoshi, R.J., Miraldo, L.L., Ovejero, R.L.F., Berger, G.U., Bernardi, D., 2024. Life table study of Rachiplusia nu (Lepidoptera: Noctuidae) on different food sources and artificial diet. J. Eco. Entomol. 2024, 117, 2135–2142, . [CrossRef]
- Specht, A., Sosa-Gómez, D.R., Roque-Specht, V.F., Valduga, E., Gonzatti, F., Schuh, S.M., Carneiro, E., 2019. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 2019, 19, 1–8. [CrossRef]
- Horikoshi, R.J., Dourado, P.M., Berger, G.U., Fernandes, D.S., Omoto, C., Willse, A., Martinelli, S., Head, G.P., Corrêa, A.S. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Sci. Rep., 2021a, 11, 15956. [CrossRef]
- Horikoshi, R.J., Bernardi, O., Godoy, D.N., Semeão, A.A., Willse, A., Corazza, G.O., Ruthes, E., Fernandes, D.S., Sosa-Gómez, D.R., Bueno, A.F., Omoto, C., Berger, G.U., Corrêa, A.S., Martinelli, S., Dourado, P.M., Head, G. Resistance status of lepidopteran soybean pests following large-scale use of MON87701 × MON89788 soybean in Brazil. Sci. Rep., 2021b 11, 21323. [CrossRef]
- Reis, A.C., Steinhaus, E.A., Godoy, D.N., Warpechowski, L.F., Diniz, L.H.M., Dallanora, A., Horikoshi, R.J., Ovejero, R.F.L., Martinelli, S., Berger, G.U., Head, G.P., Dourado P.M., Bernardi. O. (2025) Genetic basis of resistance to Cry1Ac in Rachiplusia nu (Lepidoptera: Noctuidae): inheritance mode, cross-resistance patterns and fitness cost. Pest Manag. Sci., 2025, 81, 727-735. [CrossRef]
- Bueno, A.F., Braz-Zini, E.C., Horikoshi, R.J., Bernardi, O., Andrade, G., Sutil, W.P. (2025) Over 10 years of Bt soybean in Brazil: lessons, benefits, and challenges for its use in Integrated Pest Management (IPM). Neotrop. Entomol. 2025, 54, 61 . [CrossRef]
- Hayashida, R., Godoy, C.V., Hoback, W.W., Bueno, A.F. Are economic thresholds for IPM decisions the same for low LAI soybean cultivars in Brazil? Pest Manag. Sci., 2020, 77, 1256-1261. [CrossRef]
- Damalas, C.A., Koutroubas, S.D. Botanical pesticides for eco-friendly pest management. Pesticides in Crop Production, 2020, 181–193. [CrossRef]
- Ntalli, N.G.; Spochacz, M.; Adamski, Z. The role of botanical treatments used in apiculture to control arthropod pests. Apidologie, 2022, 53, 27. [CrossRef]
- Batish, D.R., Singh, H.P., Kohli, R.K., Kaur, S. Eucalyptus essential oil as a natural pesticide. Forest ecology and management. For. Ecol. Manage., 2008, 256, 2166-2174. [CrossRef]
- Benelli, G., Pavela, R., Cianfaglione, K., Sender, J., Danuta, U., Ma’slanko, W., Canale, A., Barboni, L., Petrelli, R., Zeppa, L., Aguzzi, C., Maggi, F. Ascaridole-rich essential oil from marsh rosemary (Ledum palustre) growing in Poland exerts insecticidal activity on mosquitoes, moths and flies without serious effects on non-target organisms and human cells. Food Chem. Toxicol., 2020, 138, 111184.
- Ebadollahi, A., Ziaee, M., Palla, F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules, 2020, 25, 1556. [CrossRef]
- Tian, Y., Zhang, Z. Insecticidal activities of Sophora flavescens alt. Towards Red imported fire ants (Solenopsis invicta Buren). Toxins, 2023, 15, 105. [CrossRef]
- Isman, M.B. Commercialization and regulation of botanical biopesticides: a global perspective. In: Koul, O. (Ed.), Development and Commercialization of Biopesticides. Academic Press. 2023, 25–36. [CrossRef]
- Agrofit. Sistema de Agrotóxicos Fitossanitários. Ministério da Agricultura do Governo Federal. Available at https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons Access: September 9, 2024.
- Foerster, L.A., Avanci, M.R.F. Egg parasitoids of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae) in soybeans. Anais da Sociedade Entomológica do Brasil, 1999, 28, 545-548.
- Greene, G.L., N.C. Leppla, W.A. Dickerson. Velvetbean caterpillar: A rearing procedure and artificial medium. J. Econ. Entomol., 1976, 69, 487–488. [CrossRef]
- Hoffmann-Campo, C.B., Oliveira, E.B. & Moscardi, F.. Criação massal da lagarta da soja. Londrina, Embrapa. 23. 1985. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/445420/1/Doc1.pdf (accessed: December, 10, 2024).
- Andrade, K., Bueno, A.F., Silva, D.M., Stecca, C.S., Pasini, A., Oliveira, M.C.N. Bioecological characteristics of Chrysodeixis includens (Lepidoptera: Noctuidae) fed on different hosts. Austral Entomol., 2016, 55, 449-454. [CrossRef]
- Parra, J.R.P., Botelho, P.S.M., Ferreira, C., Bento, J.M.S. Controle biológico: uma visão inter e multidisciplinar. In: Parra, J.R.P., Botelho, P.S.M., Ferreira, C., Bento, J.M.S. (Ed.). Controle biológico no Brasil: parasitóides e predadores. São Paulo: Manole, 2002. cap. 8, p. 125-137.
- Hassan, S.A., Bigler, F., Blaisinger, P., Bogenschütz, H., Brun, J., Chiverton, P., Dickler, E., Easterbrook, M.A., Edwards, P.J., Englert, W.D., Firth, S.L., Huang, P., Inglesfield, C., Klingauf, F., Kühner, C., Ledieu, M.S., Naton, E., Oomen, P.A., Overmeer, W.P.J., Plevoets, P., Reboulet, J.N., Rieckmann, W., Samsoe-Petersen, L., Shires, S.W., Staubli, A., Stevenson, J., Tuset, J.J., Vanwetswinkel, G., Van Zon, A.Q. Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group ‘Pesticides and Beneficial Organisms’. EPPO Bulletin 15:214–255 (1985).
- Hassan, S.A. Guideline for the evaluation of side-effects of plant protection product on Trichogramma cacoeciae. In Hassan, S. A. (ed) Guidelines for testing the effects of pesticides on beneficial organisms: description of test methods. IOBC/WPRS Bulletin, 1992, 15, 18–39.
- Manzoni, C., Grützmacher, A., Giolo, F., Härter, W., Castilhos, R., Paschoal, M. Seletividade de agroquímicos utilizados na produção integrada de maçã aos parasitóides Trichogramma pretiosum Riley e Trichogramma atopovirilia Oatman & Platner (Hymenoptera: Trichogrammatidae). BioAssay, 2009, 2. [CrossRef]
- Cônsoli, F.L., Rossi, M.M., Parra, J.R.P. Developmental time and characteristics of the immature stages of Trichogramma galloi and T. pretiosum (Hymenoptera, Trichogrammatidae). Rev. Bras. Entomol. 1999, 43, 271-275.
- Carmo, E.L., Bueno, A.F., Bueno, R.C.O.F. Pesticide selectivity for the insect egg parasitoid Telenomus remus. BioControl, 2010, 55, 455–464. [CrossRef]
- Chen, M.H., Gu, Y.Y., Zhang, A.L., Sze, D.M. Y., Mo, S.L., May, B.H. Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer. Pharmacol. Res. 2021, 171, 105778. [CrossRef]
- Wu, J., Li, J., Zhang, C., Yu, X., Cuthbertson, A.G., Ali, S., 2020. Biological impact and enzyme activities of Spodoptera litura (Lepidoptera: Noctuidae) in response to synergistic action of matrine and Beauveria brongniartii. Front. Physiol. 2020, 11, 584405. [CrossRef]
- Bueno, A.F., Colmenarez, Y.C., Carnevalli, R.A., Sutil, W.P. Benefits and perspectives of adopting soybean-IPM: The success of a Brazilian programme. Plant Health Cases, 2023, 1–16. [CrossRef]
- Umpiérrez, M.L., Paullier, J., Porrini, M., Garrido, M., Santos, E., Rossini, C. Potential botanical pesticides from Asteraceae essential oils for tomato production: Activity against whiteflies, plants and bees. Ind. Crops Prod. 2017, 109, 686-692. [CrossRef]
- Samy, M.S., Alotaibi, S.S., Gaber, N., Elarrnaouty, S.A. Evaluation of five medicinal plant extracts on Aphis craccivora (Hemiptera: Aphididae) and its predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Insec. 2020, 11, 398. [CrossRef]
- Bueno, A.F., Carvalho, G.A., Santos, A.C., Sosa-Gomez, D.R., Silva, D.M. Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Cienc. Rural 2017, 47, e20160829. [CrossRef]
- Stecca, C.S., Bueno, A.F., Pasini, A., Silva, D.M., Andrade, K., Filho D.M.Z. Side-effects of glyphosate to the parasitoid Telenomus remus Nixon (Hymenoptera: Platygastridae). Neotrop. Entomol. 2016, 45, 192–200 . [CrossRef]
- Bortolotto, O.C., Pomari-Fernandes, A., Bueno, R.G.O.F., Bueno, A.F., Kruz, Y.K.S., Queiroz, A.P., Sanzovo, A., Ferreira, R.B. The use of soybean integrated pest management in Brazil: a review. Agron. Sci. Biotechnol. 2015, 1, 25-32. [CrossRef]
- Torres, J.B., Bueno, A.F. Conservation biological control using selective insecticides: A valuable tool for IPM. Biol. Control 2018, 126, 53-64. [CrossRef]
- Bueno, A.F., Panizzi, A.R., Hunt, T.E., Dourado, P.M., Pitta, R.M., Gonçalves, J. Challenges For Adoption Of Integrated Pest Management (Ipm): The Soybean Example. Neotrop. Entomol. 2021, 50, 5-20. [CrossRef]
- Lengai, G.M., Muthomi, J.W. Biopesticides and their role in sustainable agricultural production. J. Biosci. Med. 2018, 6, 7-41. [CrossRef]
- Campos, E.V., Proença, P.L., Oliveira, J.L., Bakshi, M., Abhilash, P.C., Fraceto, L.F.. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019, 105, 483-495. [CrossRef]
- Raheem, S.S., Al-Dossary, M.A., Al-Saad, H.T. Laboratory study for biodegradation of oxymatrine insecticide by single and mixed cultures of fungi isolated from agriculture soils in Basrah Governorate. Iraq. Baghdad Sci. 2019, 16, 10-17. [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233-249. https://doi.org /10.1146/Annurev-Ento- 011019-025010.
- Ayilara, M.S., Adeleke, B.S., Akinola, S.A., Fayose, C.A., Adeyemi, U.T., Gbadegesin, L.A., Omole, R.K., Johnson, R.M., Uthman, Q.O., Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: a case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. https://doi. org/10.3389/fmicb.2023.1040901.
- Carvalho, G.A., Reis, P.R., Grützmacher, A.D., Degrande, P.E., Yamamoto, P.T., Bueno, A.F. Seletividade de produtos fitossanitários: uma estratégia viável para a agricultura sustentável, in: Parra, J.R.P., Pinto, A.S., Nava, D.E., Oliveira, R.C., Diniz, A.J.F. (Eds.), Controle biológico com parasitoides e predadores na agricultura brasileira. FEALQ, Piracicaba, SP, pp.481-510. 2021.
| Commercial Product (cp) (L of cp/ha) |
Formulation | Concentration [Grams (g) of Active Ingredient (a.i)/Liter or Kilograms] | (g) a.i./ha | Commercial Product (cp) (L of cp/ha) |
|---|---|---|---|---|
| Water (control) | - | - | - | - |
| Matrine® 2.2 | Soluble concentrate (SL) | Ethanolic extract of Sophora flavescens 190.5 | 419.1 | 2.2 |
| Matrine® 1.8 | Soluble concentrate (SL) | Ethanolic extract of Sophora flavescens 190.5 | 342.9 | 1.8 |
| Matrine® 1.4 | Soluble concentrate (SL) | Ethanolic extract of Sophora flavescens 190.5 | 266.7 | 1.4 |
| Matrine® 1.0 | Soluble concentrate (SL) | Ethanolic extract of Sophora flavescens 190.5 | 190.5 | 1.0 |
| Matrine® 0.6 | Soluble concentrate (SL) | Ethanolic extract of Sophora flavescens 190.5 | 114.3 | 0.6 |
| Matrine® 0.2 | Soluble concentrate (SL) | Ethanolic extract of Sophora flavescens 190.5 | 38.1 | 0.2 |
| Treatment (L of cp/150 L H20) |
Number of de R. nu Larvae (Mortality%) | |||
|---|---|---|---|---|
| 24 Hours | 48 Hours | 72 Hours | ||
| Water (control) | 0.7 ± 0.8 c (2.9%) | 2.3 ± 0.8 c (9.6%) | 2.3 ± 0 .0 c (9.6%) | |
| Matrine® 2.2 | 23.0 ± 4.2 a (95.8 %) | 23.3 ± 1.6 a (97.1%) | 24.0 ± 0.0 a (100%) | |
| Matrine® 1.8 | 24.0 ± 0.0 a (100%) | 24.0 ± 0.0 a (100%) | 24.0 ± 0.0 a (100%) | |
| Matrine® 1.4 | 15.6 ± 2.1 b (65.0%) | 21.3 ± 0.8 a (88.8%) | 24.0 ± 0.0 a (100%) | |
| Matrine® 1.0 | 22.3 ± 2.1 a (92.9%) | 22.6 ± 1.6 a (92.9%) | 23.6 ± 0.8 a (98.3%) | |
| Matrine® 0.6 | 19.3 ± 3.4 ab (84.4%) | 22.0 ± 2.4 a (91.7%) | 23.6 ± 0.8 a (98.3%) | |
| Matrine® 0.2 | 8.6 ± 5.7 c (35.8%) | 15.3 ± 2.1 b (63.8) | 21.3 ± 2.8 b (88.8%) | |
| Statistics | F | 58.43 | 153.01 | 256.28 |
| P | 0 | 0 | 0 | |
| Treatment (L of cp/150 L H20) |
Bioassays with Pupae (Bioassay 2) | Bioassays with Adults (Bioassay 3) | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sprayed Pupae | 24 Hours | 48 Hours | 72 Hours | 24 Hours | 48 Hours | 72 Hours | ||||||||
| EPa | Cb | Eb | Cc | Eb | Cc | Eb | Cc | Eb | Cc | Eb | Cc | Eb | Cc | |
| Matrine® 2.2 | 0.36 | 1 | 8.7 | 1 | 22.1 | 1 | 55.2 | 2 | 27.3 | 1 | 32.3 | 2 | 100.0 | 4 |
| Matrine® 1.8 | 2.45 | 1 | 2.5 | 1 | 11.0 | 1 | 63.5 | 2 | 70.6 | 2 | 92.3 | 3 | 97.0 | 3 |
| Matrine® 1.4 | 0 | 1 | 0 | 1 | 8.3 | 1 | 0 | 1 | 30.1 | 2 | 48.3 | 2 | 93.4 | 3 |
| Matrine® 1.0 | 9.83 | 1 | 0 | 1 | 3.7 | 1 | 0 | 1 | 26.2 | 1 | 41.4 | 2 | 73.3 | 2 |
| Matrine® 0.6 | 0.84 | 1 | 0 | 1 | 11.9 | 1 | 36.8 | 2 | 31.5 | 2 | 31.3 | 2 | 86.5 | 3 |
| Matrine® 0.2 | 4.23 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 17.4 | 1 | 27.6 | 1 | 91.2 | 3 |
| Treatment (L of cp/150 L H20) |
Sprayed Pupae | 24 Hours | 48 Hours | 72 Hours | ||||
|---|---|---|---|---|---|---|---|---|
| Adult Emergence (%) | Parasitism (%) | Progery Viability (%) | Parasitism (%) | Progery Viability (%) | Parasitism (%) | Progery Viability (%) | ||
| Water (control) | 89.2 ± 1.5 a | 79.3 ± 5.6 a | 70.2 ± 8.3 a | 78.7 ± 2.9 a | 75.3 ± 5.6 a | 59.6 ± 12.3 a | 98.0 ± 0.9 a | |
| Matrine® 2.2 | 90.7 ± 2.0 a | 72.4 ± 4.9 a | 94.5 ± 0.6 a | 61.3 ± 6.6 a | 78.6 ± 6.3 a | 25.7 ± 13.1 a | 87.2 ± 1.8 a | |
| Matrine® 1.8 | 87.0 ± 5.8 a | 77.3 ± 4.0 a | 92.0 ± 0.9 a | 70.0 ± 11.9 a | 91.6 ± 1.1 a | 21.7 ± 4.0 a | 85.0 ± 6.7 a | |
| Matrine® 1.4 | 72.4 ± 18.3 a | 82.6 ± 5.9 a | 87.2 ± 1.4 a | 72.2 ± 5.9 a | 91.7 ± 1.6 a | 69.1 ± 12.0 a | 88.3 ± 2.2 a | |
| Matrine® 1.0 | 80.5 ± 3.0 a | 85.9 ± 4.3 a | 89.1 ±1.7 a | 75.8 ± 3.2 a | 92.3 ± 1.6 a | 58.9 ± 11.4 a | 90.1 ± 2.5 a | |
| Matrine® 0.6 | 88.5 ± 2.1 a | 82.4 ± 5.2 a | 88.9 ± 0.7 a | 69.3 ± 11.1 a | 89.3 ± 1.2 a | 37.6 ± 17.4 a | 91.0 ± 2.1 a | |
| Matrine® 0.2 | 85.5 ± 3.3 a | 85.9 ± 6.2 a | 86.5 ± 1.6 a | 83.4 ± 5.0 a | 83.8 ± 1.6 a | 67.1 ± 12.2 a | 81.3 ± 3.4 a | |
| Statistics | F | - | 0.89 | 2.03 | 2.34 | |||
| P | - | 0.51 | 0.08 | 0.05 | ||||
| X2 | 6.67 | - | 16.29 | - | 6.74 | - | 5.77 | |
| P | 0.46 | - | 0.0001 | - | 0.4 | - | 0.56 | |
| Treatment (L of cp/150 L H20) |
24 Hours | 48 Hours | 72 Hours | ||||
|---|---|---|---|---|---|---|---|
| Parasitism (%) | Progeny Viability (%) | Parasitism (%) | Progeny Viability (%) | Parasitism (%) |
Progeny Viability (%) | ||
| Water (control) | 74.8 ± 2.5 a | 93.7 ± 0.9 a | 66.1 ± 1.2 a | 87.4 ± 2.1 a | 26.4 ± 11.0 a | 75.2± 6.12 a | |
| Matrine® 2.2 | 54.3 ± 0.8 b | 83.0 ± 2.3 a | 44.7 ± 1.7 b | 79.09 ± 1.2 a | 0.0 ± 0.0 c | No existent | |
| Matrine® 1.8 | 21.9 ± 14.8 b | 50.4 ± 9.6 b | 5.0 ± 3.1 d | 32.5 ± 9.3 b | 0.7 ± 0.7 b | 20.0 ± 8.9 a | |
| Matrine® 1.4 | 52.2 ± 5.5 b | 63.4 ± 3.0 b | 34.1 ± 8.9 c | 56.2 ± 8.3 a | 1.7 ± 1.7 b | 56.0 ± 10.4 a | |
| Matrine® 1.0 | 55.1 ± 4.6 b | 84.96 ± 1.5 a | 35.1 ± 9.4 c | 56.06 ± 10.4 a | 7.0 ± 7.0 b | 10.0 ± 4.5 b | |
| Matrine® 0.6 | 51.1 ± 5.1 b | 87.4 ± 0.7 a | 45.4 ± 8.1 b | 28.57 ± 8.8 b | 3.5 ± 2.8 b | 28.6 ± 8.8 a | |
| Matrine® 0.2 | 61.7 ± 2.1 a | 83.8 ± 1.3 a | 47.8 ± 5.1 b | 20 ± 8.9 b | 2.3 ± 1.7 b | 40.0 ± 11.0 a | |
| Statistics | F | - | - | - | 3.02 | - | - |
| P | - | - | - | 0.04 | - | - | |
| X2 | 19.56 | 18.26 | 24.9 | - | 16.5 | 29.7 | |
| P | 0.006 | 0.01 | 0.0007 | - | 0.02 | 0.002 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
