Submitted:
19 June 2025
Posted:
19 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Hotspots in Behavior Monitoring and Application Research
2.1 Targeting Animal Species and Behavior Type
2.2. Monitoring Techniques
2.3 Monitoring Purposes and Application


3. Behavior Monitoring Based on Wearable Sensors
3.1. Sensing
3.1.1. Sensor Type
| Sensing Method | Sampling Frequency | Deployment Location | Behavior Categories Identified | Time Window Size | Recognition Accuracy | Sample Size | Reference |
| ACC | 62.5 Hz | Jaw | grazing, rumination, resting | 5s | 93% | 3 non-lactating Sarda ewes; 675 minutes of collected data | [29] |
| ACC | 12 Hz | Ear | grazing, standing, walking | 10s | 94-99% | 10 Merino sheep; 2956 10-second segments | [24] |
| ACC | 50 Hz | Neck | grazing, walking, rumination, resting, drinking | 5.12s | 90% | 10 Angus breed cattle; 24,525 data samples | [30] |
| ACC | 50 -62.5 Hz | Neck, Ear | feeding, walking, resting, ruminating | 4.1s- 5.12s | 80.9%-87.4% | 27 cows; 187,937 data samples | [30] |
| ACS | 44.1kHz | Forehead | grazing, ruminating | 5 mins | 76.5%-83.3%- | 5 dairy cows;total of 137 hours | [31] |
| ACS | 44.1kHz | Neck | mouth open, mouth closed, mixed mouth movements | 256 points | 99.5% | 10 dairy cows;709 vocal | [32] |
| ACS | 11.69Hz-35.08HZ | Forehead | bites, exclusive chews, chew-bite combinations, exclusive sorting | 2048 points | 89.62% -95.9% | 10 Holstein cows; 60 audio data | [33] |
| PRS | 2Hz | Reticulorumen | ruminating, eating, drinking, sleeping | 120 s | 98% | four rumen-fistulated cows | [34] |
| PRS | 17Hz | Lumbar Intervertebral | the intradiscal pressure signal of an anesthetized sheep | \ | \ | 1 female merino ewe;2 hours respiratory rate data | [35] |
| GNSS | \ | Neck | behaviors during estrus and non-estrus | \ | 90-94% | 8 ewes and 40 experienced ewes ; 8 days data | [36] |
| GPS | \ | Neck | sheep feeding patterns and pasture grazing behavior | \ | \ | 7 ewes, 350 sheep; 3 years data | [37] |
| Sensing Method | Sampling Frequency | Deployment Location | Behavior Categories Identified | Time Window Size | Recognition Accuracy | Sample Size | Equipment Duration | Reference |
| ACC,UR | 50 Hz | Neck | grazing, eating, walking, running, standing | 20ms | 95% | a sheep herd over 3 days of grazing;12,968 data points | \ | [38] |
| ACC, GPS | 60 Hz (GPS), 12 Hz (ACC) | Neck | grazing or non-grazing (walking, standing, ruminating, drinking) | 1min21s | 88.8% | 45 one-year-old cattle; 3 months;5,261 datasets | \ | [39] |
| PRS, IMU | 30 Hz(PRS), 200Hz(IMU) | Claws of hind limbs | gait analysis | \ | \ | ten dairy cows | 4h | [40] |
| ACC, GYR | 16Hz | Ears and collar | walking, standing, lying down | 7s | 95% | 30 datasets from 6 sheep | 2.4 days | [41] |
| ACC, GYR | 16Hz | Ears | walking, standing, lying down | 7s | 80% | 10 non-lame sheep and 13 lame sheep ;20,104 samples | \ | [42] |
| ACC, GYR | 20Hz | Neck | walking, standing, grazing, lying down, running | 3s | 87.8% | 3 sheep;67.5 hours data | \ | [18] |
| IMU、GPS | IMU(20Hz)、GPS(1Hz) | Chin, neck, and hind legs | feeding, ruminating, walking, standing, lying down | 5s | 98.9%-99.9% | 22 sheep; over 2-3 days | \ | [43] |
| Model | Behavior | Accuracy | DataSet | Applications | Reference |
| FMM, DT | standing,lying,transitional behaviors | 99% | 8 cows | identification of multiple behaviors of cows | [91] |
| KNN, RF, GBDT, SVM, LVQ, KNN-RF | feeding, ruminating, running, walking, resting, drinking, head shaking | 80%-99% | 3 cows 3 days | identification of multiple behaviors of cows | [92] |
| K-means, interval thresholding classification | standing, walking, running | 96.21% | 107,450 | identification of ram's locomotor behavior | [93] |
| RF | lying,grazing,walking,standing,chewing, social,ruminating, resting | 76%-94% | 12 cows136 minutes | prediction of cow lying behavior in pastures | [94,95] |
| BP neural network | acoustic signals in ewes under stressful behavior | 93.8% | 1,200 | recognizing their vocal signals of ewes | [96] |
| KNN | ruminating | 93.7% | 5 cows | monitoring of cow ruminant behavior | [97] |
| K-means, SVM | standing, walking, feeding | 79%-93% | 71,594 | sheep behavior recognition | [64] |
| CDA, DA | grazing, ruminating, other | 88%-90% | 69,975 | behavior of grazing animals | [62,66] |
| QDA | lame walking, grazing, standing, walking | 82%-87% | 4,419 | distinguish between vocal and limp gait movements in sheep | [24] |
| Model | Behavior | Accuracy | DataSet | Applications | Reference |
| FA, SVM | feeding, ruminating, drinking | 98.02% | 4,200,000pieces of data | cow behavior monitoring | [98] |
| GA, SVM | walking, lying, drinking, feeding, ruminating / bite, chewing, chew-bite,selecting | 97.88%95.66% | 29,150pieces of data,10 cows | behavioral monitoring of ewes | [19,33] |
| HMM, BP neural network | coughing signals | 95.04% | 900 | monitoring the coughing of captive sheep | [58] |
| Bidir-LSTM | feeding, lying, rumination (lying), rubbing (legs), social licking, rubbing (neck) | 94.9% | 1066 hours | detect important physiological states in cattle | [99] |
| Model | Behavior | Accuracy | DataSet | Applications | Reference |
| GAN, TCN | lying, standing, walking, running, jump, run around | 97.15% | 211,000 pieces of data | Recognizing the locomotor behavior of dairy goats | [100] |
| BP neural network, FCN, CNN | grazing | 83%-94% | 30,000 pieces of data | estimating the distribution of grazing area intake | [56] |
| An end-to-end deep neural network | grazing | 93.93% | 24,525 pieces of data | animal behavior classification | [13] |
| CNN, TL | feeding, ruminating, other | 93.9% | 21 cows 3 days | recognition of the feeding behavior of cows | [101] |
| Conv1D, Conv2D, LSTM | bite, chewing, chew-bite | 93% | 3 cows | classifying chewing events in grazing cattle by acoustic signals | [102] |
| CBIA | bite, chewing, chew-bite | 90% | 2 cows6 days | classifying chewing events in grazing cattle by acoustic signals | [103] |
| LSTM-RNN, CNN | feeding, lying, ruminating, salt licking, moving, social licking, headbanging | 88.7% | 11,391pieces of data | classification of cattle behavioral patterns | [104] |
| FCN | lying down and ruminating, lying, feeding, Leg rubbing, self licking, neck rubbing, social licking | 83.75% | 20,000pieces of data | classification of cattle behavioral patterns | [105] |
3.1.2. Sampling Frequency
3.1.3. Sensor Deployment Position
3.2. Algorithms for Behavioral Recognition

3.2.1. Data Preprocessing
Denoising
Windowing
Feature Extraction
3.2.2. Behavior Classification
Machine Learning Algorithm
Algorithm Assembling and Deep Learning
3.2.3. Promising Use of Tiny Machine Learning

4. Application with Behavioral Monitoring
4.1. Feed Intake Estimation
4.2. Estrus and Parturition Alarming
4.3. Assessing Animal Health and Welfare
5. Challenges and Prospects
5.1. Current Challenges
5.2. Future Research Prospects
Author Contributions
Funding
Conflicts of Interest
References
- OECD-FAO Agricultural Outlook 2021-2030; OECD Food Agriculture Organization of the United Nations, 2021.
- Li, Y.F.; Wang, W.S.; Guo, L.F.; Shu, H.; Xu, B.B.; Qi, J.W. Research Progress of Cattle Behavior Recognition Based on Wearable Sensors. Acta Ecologiae Animalis Domastici 2022, 43, 1–9. [Google Scholar] [CrossRef]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Computers and Electronics in Agriculture 2022, 192, 106610. [Google Scholar] [CrossRef]
- Shangru, L.; Chengrui, Z.; Ruixue, W.; Jiamei, S.; Hangshu, X.; Yonggen, Z.; Yukun, S. Establishment of a feed intake prediction model based on eating time, ruminating time and dietary composition. Computers and Electronics in Agriculture 2022, 202, 107296. [Google Scholar] [CrossRef]
- Talukder, S.; Thomson, P.C.; Kerrisk, K.L.; Clark, C.E.F.; Celi, P. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system. Theriogenology 2015, 83, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Silper, B.F.; Madureira, A.M.L.; Kaur, M.; Burnett, T.A.; Cerri, R.L.A. Short communication: Comparison of estrus characteristics in Holstein heifers by 2 activity monitoring systems. Journal of Dairy Science 2015, 98, 3158–3165. [Google Scholar] [CrossRef]
- Zaidi, S.A.R.; Hayajneh, A.M.; Hafeez, M.; Ahmed, Q.Z. Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML). IEEE Access 2022, 10, 100867–100877. [Google Scholar] [CrossRef]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review. Animals 2021, 11, 3033. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors 2022, 22, 6541. [Google Scholar] [CrossRef]
- Shi, H.X.; Gao, F.Y.; Liu, T.H.; Wang, H.; Ha, S.; Yang, T.T.; Yuan, C.C. Research progress of the recognition of free-range sheep behavior using sensor technology. Transactions of the Chinese Society of Agricultural Engineering 2023, 39, 1–18. [Google Scholar] [CrossRef]
- Liu, M.; He, J.; Liu, D.; Hou, M.; Ma, Y. Bibliometric and visualized analysis of dynamic balance and brain function using web of science and CiteSpace from 1995 to 2022. Heliyon 2024, 10, e24300. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Chen, Y.; Feng, X.; Sun, Z. Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace. Sustainability 2021, 13, 7662. [Google Scholar] [CrossRef]
- Arablouei, R.; Wang, L.; Currie, L.; Yates, J.; Alvarenga, F.A.P.; Bishop-Hurley, G.J. Animal behavior classification via deep learning on embedded systems. Computers and Electronics in Agriculture 2023, 207, 107707. [Google Scholar] [CrossRef]
- Paudyal, S.; Maunsell, F.P.; Richeson, J.T.; Risco, C.A.; Donovan, D.A.; Pinedo, P.J. Rumination time and monitoring of health disorders during early lactation. Animal 2018, 12, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Gurule, S.C.; Tobin, C.T.; Bailey, D.W.; Hernandez Gifford, J.A. Evaluation of the tri-axial accelerometer to identify and predict parturition-related activities of Debouillet ewes in an intensive setting. Applied Animal Behaviour Science 2021, 237, 105296. [Google Scholar] [CrossRef]
- Hao, W.; Zhang, K.; Zhang, L.; Han, M.; Hao, W.; Li, F.; Yang, G. TSML: A New Pig Behavior Recognition Method Based on Two-Stream Mutual Learning Network. Sensors 2023, 23. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xiao, D.J.A.A.B.S. A review of video-based pig behavior recognition. 2020, 233, 105146.
- Jin, Z.; Guo, L.; Shu, H.; Qi, J.; Li, Y.; Xu, B.; Zhang, W.; Wang, K.; Wang, W. Behavior Classification and Analysis of Grazing Sheep on Pasture with Different Sward Surface Heights Using Machine Learning. Animals 2022, 12, 1744. [Google Scholar] [CrossRef]
- Ying, Y.W.; Zeng, S.W.; Zhao, A.Y.; Yan, F.F. Recognition method for prenatal behavior of ewes based on the acquisition nodes of the collar. Transactions of the Chinese Society of Agricultural Engineering 2020, 36, 210–219. [Google Scholar] [CrossRef]
- Zhang, L.N.; Wu, P.; Wu, Y.; Xuan, C.Z.; Ma, Y.H.; Chen, P.Y. Real-time non-contact monitoring method for growth parameters of sheep based on image analysis. Transactions of the Chinese Society of Agricultural Engineering 2017, 33, 182–191. [Google Scholar] [CrossRef]
- Xuan, C.Z.; Ma, Y.H.; Wu, P.; Zhang, L.N.; Hao, M.; Zhang, X.Y. Behavior classification and recognition for facility breeding sheep based on acoustic signal weighted feature. Transactions of the Chinese Society of Agricultural Engineering 2016, 32, 195–202. [Google Scholar] [CrossRef]
- Qi, Y.S.; Jiao, J.; Bao, T.F.; Wang, Z.X.; Du, X.X. Cattle face detection algorithm in complex scenes using adaptive attention mechanism. Transactions of the Chinese Society of Agricultural Engineering 2023, 39, 173–183. [Google Scholar] [CrossRef]
- Li, Q.; Zhuo, Z.; Gao, R.; Wang, R.; Zhang, N.; Shi, Y.; Wu, T.; Ma, W. A pig behavior-tracking method based on a multi-channel high-efficiency attention mechanism. Agriculture Communications 2024, 2, 100062. [Google Scholar] [CrossRef]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Trotter, M. Categorising sheep activity using a tri-axial accelerometer. Computers and Electronics in Agriculture 2018, 145, 289–297. [Google Scholar] [CrossRef]
- Guo, D.D.; Hao, R.F.; Ji, Z.T.; Yang, X.Y.; Zhou, C.; Liang, X.J. Classification and Recognition of Goats Daily Behavior Based onThree-dimensional Acceleration Sensor. Acta Ecologiae Animalis Domastic 2014, 35, 53–57. [Google Scholar]
- Barwick, J.; Lamb, D.; Dobos, R.; Schneider, D.; Welch, M.; Trotter, M. Predicting Lameness in Sheep Activity Using Tri-Axial Acceleration Signals. Animals 2018, 8, 12. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Wang, J.; Zhao, K.; Li, X.; Liu, B.; Zhou, Y. Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag. animal 2023, 17, 100811. [Google Scholar] [CrossRef]
- Ilyas, Q.M.; Ahmad, M.; Anisi, M.H. Smart Farming: An Enhanced Pursuit of Sustainable Remote Livestock Tracking and Geofencing Using IoT and GPRS. Wireless Communications and Mobile Computing 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Giovanetti, V.; Decandia, M.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livestock Science 2017, 196, 42–48. [Google Scholar] [CrossRef]
- Wang, L.; Arablouei, R.; Alvarenga, F.A.P.; Bishop-Hurley, G.J. Classifying animal behavior from accelerometry data via recurrent neural networks. Computers and Electronics in Agriculture 2023, 206. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Martinez Rau, L.S.; Galli, J.R.; Planisich, A.M.; Utsumi, S.A.; Milone, D.H.; Giovanini, L.L.; Rufiner, H.L. An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Computers and Electronics in Agriculture 2020, 173. [Google Scholar] [CrossRef]
- Shorten, P.R.; Hunter, L.B. Acoustic sensors for automated detection of cow vocalization duration and type. Computers and Electronics in Agriculture 2023, 208. [Google Scholar] [CrossRef]
- Abdanan Mehdizadeh, S.; Sari, M.; Orak, H.; Pereira, D.F.; Nääs, I.d.A. Classifying Chewing and Rumination in Dairy Cows Using Sound Signals and Machine Learning. Animals 2023, 13. [Google Scholar] [CrossRef]
- Josje Scheurwatero¹*, M.H. , Mirjam Nielen', Hans Heesterbeek', Arend Schot?Rob van Hoei³, Hilde Aardema. Pressure measurement in the reticulum todetect different behaviors of healthy cows. PLOS ONE 2021. [Google Scholar]
- Roriz, P.; Ferreira, J.; Potes, J.; Oliveira, M.; Frazão, O.; Santos, J.; Simoes, J. In vivo measurement of the pressure signal in the intervertebral disc of an anesthetized sheep. Journal of biomedical optics 2014, 19, 37006. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Manning, J.K.; Trotter, M.G.; Schneider, D.A.; Thomson, P.C.; Bush, R.D.; Cronin, G.M. GNSS technology and its application for improved reproductive management in extensive sheep systems. Animal Production Science 2015, 55. [Google Scholar] [CrossRef]
- Ermetin, O.; Karadağ, Y.; Yıldız, A.K.; Karaca, Ö.; Tüfekçi, H.; Tufan, Y.; Kayaalp, A.N. Use of a Global Positioning System (GPS) to Manage Extensive Sheep Farming and Pasture Land. Journal of the Hellenic Veterinary Medical Society 2022, 73, 4441–4448. [Google Scholar] [CrossRef]
- Nóbrega, L.; Gonçalves, P.; Antunes, M.; Corujo, D. Assessing sheep behavior through low-power microcontrollers in smart agriculture scenarios. Computers and Electronics in Agriculture 2020, 173. [Google Scholar] [CrossRef]
- Brennan, J.; Johnson, P.; Olson, K. Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer. Computers and Electronics in Agriculture 2021, 181. [Google Scholar] [CrossRef]
- Fischer, D.; Friebel, L.I.G.; Grund, S.; Winter, W.; Wagner, F.C.; Mülling, C.K.W. Gait Analysis in Walking and Trotting Dairy Cows on Different Flooring Types with Novel Mobile Pressure Sensors and Inertial Sensors. Animals 2022, 12. [Google Scholar] [CrossRef]
- Walton, E.; Casey, C.; Mitsch, J.; Vázquez-Diosdado, J.A.; Yan, J.; Dottorini, T.; Ellis, K.A.; Winterlich, A.; Kaler, J. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. Royal Society Open Science 2018, 5, 171442. [Google Scholar] [CrossRef]
- Kaler, J.; Mitsch, J.; Vázquez-Diosdado, J.A.; Bollard, N.; Dottorini, T.; Ellis, K.A. Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep. Royal Society Open Science 2020, 7. [Google Scholar] [CrossRef]
- Jin, Z.; Shu, H.; Hu, T.; Jiang, C.; Yan, R.; Qi, J.; Wang, W.; Guo, L. Behavior classification and spatiotemporal analysis of grazing sheep using deep learning. Computers and Electronics in Agriculture 2024, 220, 108894. [Google Scholar] [CrossRef]
- Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, A.P. Observing the unwatchable through acceleration logging of animal behavior. Animal Biotelemetry 2013, 1, 1–16. [Google Scholar] [CrossRef]
- Mansbridge, N.; Mitsch, J.; Bollard, N.; Ellis, K.; Miguel-Pacheco, G.G.; Dottorini, T.; Kaler, J. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep. Sensors 2018, 18, 3532. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. Research on monitoring of grazing information for sheep based on acoustic signals. Inner Mongolia Agricultural University, Hohhot, 2021.
- Chen, G.; Li, C.; Guo, Y.; Shu, H.; Cao, Z.; Xu, B. Recognition of Cattle's Feeding Behaviors Using Noseband Pressure Sensor With Machine Learning. Frontiers in Veterinary Science 2022, 9. [Google Scholar] [CrossRef]
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Computers and Electronics in Agriculture 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Hulbert, I.A.R.; French, J. The accuracy of GPS for wildlife telemetry and habitat mapping. Journal of Applied Ecology 2001, 38, 869–878. [Google Scholar] [CrossRef]
- Hongzhou, L.; Lu, Y. Research and design of technology for tracking and positioning wild stocking animals. Transactions of the Chinese Society of Agricultural Engineering 2014, 30, 232–237. [Google Scholar] [CrossRef]
- Zhang, S.M.; Cui, X.S.; Wu, Y.M.; Zheng, Q.L.; Wang, X.X.; Fan, W. Analyzing space-time characteristics of Xiangshan trawling based on BeidouVessel Monitoring System Data. Transactions of the Chinese Society of Agriculural Engineering 2015, 31, 151–156. [Google Scholar]
- Chelotti, J.O.; Vanrell, S.R.; Milone, D.H.; Utsumi, S.A.; Galli, J.R.; Rufiner, H.L.; Giovanini, L.L. A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle. Computers and Electronics in Agriculture 2016, 127, 64–75. [Google Scholar] [CrossRef]
- Deniz, N.N.; Chelotti, J.O.; Galli, J.R.; Planisich, A.M.; Larripa, M.J.; Leonardo Rufiner, H.; Giovanini, L.L. Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals. Computers and Electronics in Agriculture 2017, 138, 167–174. [Google Scholar] [CrossRef]
- Liu, Y.Q. Research of dairy goat behavior classification based on multi-sensor data. Northwest A&F University, 2020.
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Schneider, D.; Trotter, M. Identifying Sheep Activity from Tri-Axial Acceleration Signals Using a Moving Window Classification Model. Remote Sensing 2020, 12, 646. [Google Scholar] [CrossRef]
- Zhang, C.H.; Xuan, C.Z.; Yu, W.B.; Hao, M.; Liu, L.F. Grazing Behavior of Herding Sheep Based on Three-axis Acceleration Sensor. Transactions of the Chinese Society of Agricultural Engineering 2021, 52, 307–313. [Google Scholar] [CrossRef]
- Price, E.; Langford, J.; Fawcett, T.W.; Wilson, A.J.; Croft, D.P. Classifying the posture and activity of ewes and lambs using accelerometers and machine learning on a commercial flock. Applied Animal Behaviour Science 2022, 251, 105630. [Google Scholar] [CrossRef]
- Xuan, C.Z.; Wu, P.; Zhang, L.N.; Ma, Y.H.; Zhang, Y.A.; WU, J. Feature Parameters Extraction and Recognition Method of Sheep Cough Sound. Transactions of the Chinese Society for Agricultural Machinery 2016, 47, 342–348. [Google Scholar] [CrossRef]
- Duan, G.H. The Study on Estimation Method of Forage Intake of Tibetan Sheep Based on Acoustic Analysis. Nanjing Agricultural University, Nanjing, 2020.
- Wang, K.; Wu, P.; Cui, H.; Xuan, C.; Su, H. Identification and classification for sheep foraging behavior based on acoustic signal and deep learning. Computers and Electronics in Agriculture 2021, 187, 106275. [Google Scholar] [CrossRef]
- Sheng, H.; Zhang, S.; Zuo, L.; Duan, G.; Zhang, H.; Okinda, C.; Shen, M.; Chen, K.; Lu, M.; Norton, T. Construction of sheep forage intake estimation models based on sound analysis. Biosystems Engineering 2020, 192, 144–158. [Google Scholar] [CrossRef]
- Decandia, M.; Giovanetti, V.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. The effect of different time epoch settings on the classification of sheep behaviour using tri-axial accelerometry. Computers and Electronics in Agriculture 2018, 154, 112–119. [Google Scholar] [CrossRef]
- Guo, L.; Welch, M.; Dobos, R.; Kwan, P.; Wang, W. Comparison of grazing behaviour of sheep on pasture with different sward surface heights using an inertial measurement unit sensor. Computers and Electronics in Agriculture 2018, 150, 394–401. [Google Scholar] [CrossRef]
- Cao, L.T.; Cheng, M.; Bo, Y.H.; Liu, Y.Q.; Sui, H.Y.; Zhao, X.X. Influence and analysis of deployment location of wearable devices on sheep behavior recognition. Journal of Chinese Agricultural Mechanization 2022, 43, 133–141. [Google Scholar] [CrossRef]
- Oudshoorn, F.W.; Cornou, C.; Hellwing, A.L.F.; Hansen, H.H.; Munksgaard, L.; Lund, P.; Kristensen, T. Estimation of grass intake on pasture for dairy cows using tightly and loosely mounted di- and tri-axial accelerometers combined with bite count. Computers and Electronics in Agriculture 2013, 99, 227–235. [Google Scholar] [CrossRef]
- Decandia, M.; Rassu, S.P.G.; Psiroukis, V.; Hadjigeorgiou, I.; Fountas, S.; Molle, G.; Acciaro, M.; Cabiddu, A.; Mameli, M.; Dimauro, C.; et al. Evaluation of proper sensor position for classification of sheep behaviour through accelerometers. Small Ruminant Research 2021, 201, 106445. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.; Khan, W.; Sneddon, J.; Mason, A. Feature Extraction and Random Forest to Identify Sheep Behavior from Accelerometer Data. Intelligent Computing Methodologies 2020, 408–419. [Google Scholar]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Ouma, S.; Wulandari; Yoshioka, H. ; Itoyama, E. Dam behavior patterns in Japanese black beef cattle prior to calving: Automated detection using LSTM-RNN. Computers and Electronics in Agriculture 2020, 169, 105178. [Google Scholar] [CrossRef]
- Tsoukas, V.; Boumpa, E.; Giannakas, G.; Kakarountas, A. A Review of Machine Learning and TinyML in Healthcare. Proceedings of the 25th Pan-Hellenic Conference on Informatics 2022, 69–73. [Google Scholar] [CrossRef]
- Nicolas, C.; Naila, B.; Amar, R.C. TinyML Smart Sensor for Energy Saving in Internet of Things Precision Agriculture platform. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 2022, 5-8 July 2022; pp. 256–259. [Google Scholar]
- Alongi, F.; Ghielmetti, N.; Pau, D.; Terraneo, F.; Fornaciari, W. Tiny Neural Networks for Environmental Predictions: An Integrated Approach with Miosix. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), 2020, 14-17 Sept. 2020; pp. 350–355. [Google Scholar]
- Ray, P.P. A review on TinyML: State-of-the-art and prospects. Journal of King Saud University - Computer and Information Sciences 2022, 34, 1595–1623. [Google Scholar] [CrossRef]
- Xie, J.; Colonna, J.G.; Zhang, J.L. Bioacoustic signal denoising: a review. Artificial Intelligence Review 2020, 54, 3575–3597. [Google Scholar] [CrossRef]
- Zhang, J.; Marszałek, M.; Lazebnik, S.; Schmid, C. Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. International Journal of Computer Vision 2007, 73, 213–238. [Google Scholar] [CrossRef]
- Haykin, S. Adaptive Filter Theory. 1986.
- Riaboff, L.; Aubin, S.; Bédère, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of pre-processing methods for the prediction of cattle behaviour from accelerometer data. Computers and Electronics in Agriculture 2019, 165, 104961. [Google Scholar] [CrossRef]
- Jin, M.; Wang, C. EFFECT OF WAVELET DE-NOISING ON THE CLASSIFICATION OF PIG BEHAVIOUR. Engenharia Agrícola 2021, 41. [Google Scholar] [CrossRef]
- Chu, C.-S.J. Time series segmentation: A sliding window approach. Information Sciences 1995, 85, 147–173. [Google Scholar] [CrossRef]
- Dehghani, A.; Sarbishei, O.; Glatard, T.; Shihab, E. A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors. Sensors 2019, 19, 5026. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, F.A.P.; Borges, I.; Oddy, V.H.; Dobos, R.C. Discrimination of biting and chewing behaviour in sheep using a tri-axial accelerometer. Computers and Electronics in Agriculture 2020, 168, 105051. [Google Scholar] [CrossRef]
- Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Applied Animal Behaviour Science 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Moraes, L.E.; Trotter, M. Behaviour classification of extensively grazed sheep using machine learning. Computers and Electronics in Agriculture 2020, 169, 105175. [Google Scholar] [CrossRef]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, 2014, 27-29 Aug. 2014; pp. 372–378. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Computers & Electrical Engineering 2014, 40, 16–28. [Google Scholar]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine 2006, 10, 156–167. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.J.; Khan, W.; Sneddon, J.; Al-Shamma'a, A.; Liatsis, P. A survey of machine learning approaches in animal behaviour. Neurocomputing 2022, 491, 442–463. [Google Scholar] [CrossRef]
- Hosseininoorbin, S.; Layeghy, S.; Kusy, B.; Jurdak, R.; Bishop-Hurley, G.J.; Greenwood, P.L.; Portmann, M. Deep learning-based cattle behaviour classification using joint time-frequency data representation. Computers and Electronics in Agriculture 2021, 187, 106241. [Google Scholar] [CrossRef]
- Dargie, W. Analysis of Time and Frequency Domain Features of Accelerometer Measurements. In Proceedings of the 2009 Proceedings of 18th International Conference on Computer Communications and Networks, 3-6 Aug.
- Chauhan, N.K.; Singh, K. A Review on Conventional Machine Learning vs Deep Learning. In Proceedings of the 2018 International Conference on Computing, 28-29 Sept. 2018, 2018, Power and Communication Technologies (GUCON); pp. 347–352.
- Achour, B.; Belkadi, M.; Aoudjit, R.; Laghrouche, M. Unsupervised automated monitoring of dairy cows’ behavior based on Inertial Measurement Unit attached to their back. Computers and Electronics in Agriculture 2019, 167, 105068. [Google Scholar] [CrossRef]
- Tian, F.; Wang, J.; Xiong, B.; Jiang, L.; Song, Z.; Li, F. Real-Time Behavioral Recognition in Dairy Cows Based on Geomagnetism and Acceleration Information. IEEE Access 2021, 9, 109497–109509. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wu, P.; Xuan, C.Z.; Yang, J.N.; Liu, Y.Q.; Hao, M. Recognition of the movement behavior ofstud rams based on acceleration sensor. Journal of China Agricultural University 2018, 23, 104–114. [Google Scholar] [CrossRef]
- Schmeling, L.; Elmamooz, G.; Hoang, P.T.; Kozar, A.; Nicklas, D.; Sünkel, M.; Thurner, S.; Rauch, E. Training and Validating a Machine Learning Model for the Sensor-Based Monitoring of Lying Behavior in Dairy Cows on Pasture and in the Barn. Animals 2021, 11, 2660. [Google Scholar] [CrossRef]
- Balasso, P.; Marchesini, G.; Ughelini, N.; Serva, L.; Andrighetto, I. Machine Learning to Detect Posture and Behavior in Dairy Cows: Information from an Accelerometer on the Animal’s Left Flank. Animals 2021, 11, 2972. [Google Scholar] [CrossRef] [PubMed]
- Xuan, C.Z.; Wu, P.; Ma, Y.H.; Zhang, L.N.; Han, D.; Liu, Y.Q. Vocal signal recognition of ewes based on power spectrum and formant analysis method. Transactions of the Chinese Society of Agricultural Engineering 2015, 31, 219–224. [Google Scholar] [CrossRef]
- Shen, W.; Sun, Y.; Zhang, Y.; Fu, X.; Hou, H.; Kou, S.; Zhang, Y. Automatic recognition method of cow ruminating behaviour based on edge computing. Computers and Electronics in Agriculture 2021, 191, 106495. [Google Scholar] [CrossRef]
- Ren, X.H.; Liu, G.; Zhang, M.; Si, Y.S.; Zhang, X.Y.; Ma, L. Dairy Cattle's Behavior Recognition Method Based on Support Vector Machine Classification Model. Transactions of the Chinese Society for Agricultural Machinery 2019, 50, 290–296. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, M.; Peng, Z.; Liu, M.; Wang, M.; Peng, Y. Recognising Cattle Behaviour with Deep Residual Bidirectional LSTM Model Using a Wearable Movement Monitoring Collar. Agriculture 2022, 12, 1237. [Google Scholar] [CrossRef]
- Jin, B. Research on Recognition of Dairy Goat Movement Behavior Based on Wearable Multi sensor. Northwest A&F University, 2022.
- Bloch, V.; Frondelius, L.; Arcidiacono, C.; Mancino, M.; Pastell, M. Development and Analysis of a CNN- and Transfer-Learning-Based Classification Model for Automated Dairy Cow Feeding Behavior Recognition from Accelerometer Data. Sensors 2023, 23, 2611. [Google Scholar] [CrossRef]
- Leso, L.; Becciolini, V.; Rossi, G.; Camiciottoli, S.; Barbari, M. Validation of a Commercial Collar-Based Sensor for Monitoring Eating and Ruminating Behaviour of Dairy Cows. Animals 2021, 11. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Galli, J.R.; Giovanini, L.L.; Rufiner, H.L. A pattern recognition approach for detecting and classifying jaw movements in grazing cattle. Computers and Electronics in Agriculture 2018, 145, 83–91. [Google Scholar] [CrossRef]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Wulandari; Yoshioka, H. ; Itoyama, E. Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units. Computers and Electronics in Agriculture 2019, 157, 247–253. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Y.; Li, G.; Liu, M.; Hu, R.; Zou, H.; Wang, Z.; Peng, Y. Classification of cow behavior patterns using inertial measurement units and a fully convolutional network model. Journal of Dairy Science 2023, 106, 1351–1359. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.J.; Mason, A.; Sneddon, J.; Shaw, A.; Fergus, P.; Chalmers, C.; Al-Jumeily, D. Machine Learning Techniques for Classification of Livestock Behavior. In Proceedings of the International Conference on Neural Information Processing; 2018. [Google Scholar]
- Bielecki, T.; Jakubowski, J.; Nieweglowski, M. Intricacies of Dependence between Components of Multivariate Markov Chains: Weak Markov Consistency and Markov Copulae. ELECTRONIC JOURNAL OF PROBABILITY 2013, 18, 1–21. [Google Scholar] [CrossRef]
- Riaboff, L.; Poggi, S.; Madouasse, A.; Couvreur, S.; Aubin, S.; Bédère, N.; Goumand, E.; Chauvin, A.; Plantier, G. Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. 2020, 169. [CrossRef]
- Ding, L.; Lv, Y.; Jiang, R.; Zhao, W.; Li, Q.; Yang, B.; Yu, L.; Ma, W.; Gao, R.; Yu, Q. Predicting the Feed Intake of Cattle Based on Jaw Movement Using a Triaxial Accelerometer. Agriculture 2022, 12. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annual Review of Animal Biosciences 2019, 7, 403–425. [Google Scholar] [CrossRef]
- Kallimani, R.; Pai, K.; Raghuwanshi, P.; Iyer, S.; López, O.L.A. TinyML: Tools, applications, challenges, and future research directions. Multimedia Tools and Applications 2023, 83, 29015–29045. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, L.; Chen, W.M.; Wang, W.C.; Han, S. Tiny Machine Learning: Progress and Futures [Feature]. IEEE Circuits and Systems Magazine 2023, 23, 8–34. [Google Scholar] [CrossRef]
- Nikolaos, S.; Aristeidis, K.; Christos, K.; Spyros, S. TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A Systematic Review. Future Internet 2022, 14, 363. [Google Scholar] [CrossRef]
- Chun-Ki, K. Development of Embedded Machine Learning Finger Number Recognition Application using Edge Impulse Platform. 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), 2023; 2697–2699. [Google Scholar] [CrossRef]
- Georgios, S.; Marinela, M.; Maria-Evgenia, X.; Nikolaos, P.; Vasileios, T.; Theodoros, B. Unlocking the Path Towards Automation of Tiny Machine Learning for Edge Computing. 2024 International Conference on Smart Applications, Communications and Networking (SmartNets), 2024; 1–6. [Google Scholar] [CrossRef]
- Diouani, A.; El Hamdi, R.; Njah, M. Assessing the Efficacy of TinyML Implementations on STM32 Microcontrollers: A Performance Evaluation Study. 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP). [CrossRef]
- Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits and Systems Magazine 2020, 20, 4–18. [Google Scholar] [CrossRef]
- Huhtanen, P.; Rinne, M.; Mäntysaari, P.; Nousiainen, J. Integration of the effects of animal and dietary factors on total dry matter intake of dairy cows fed silage-based diets. Animal : an international journal of animal bioscience 2011, 5, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Leiber, F.; Holinger, M.; Zehner, N.; Dorn, K.; Probst, J.K.; Spengler Neff, A. Intake estimation in dairy cows fed roughage-based diets: An approach based on chewing behaviour measurements. Applied Animal Behaviour Science 2016, 185, 9–14. [Google Scholar] [CrossRef]
- Ungar, E.D.; Ravid, N.; Zada, T.; Ben-Moshe, E.; Yonatan, R.; Baram, H.; Genizi, A. The implications of compound chew–bite jaw movements for bite rate in grazing cattle. Applied Animal Behaviour Science 2006, 98, 183–195. [Google Scholar] [CrossRef]
- Davison, C.; Bowen, J.M.; Michie, C.; Rooke, J.A.; Jonsson, N.; Andonovic, I.; Tachtatzis, C.; Gilroy, M.; Duthie, C.A. Predicting feed intake using modelling based on feeding behaviour in finishing beef steers. Animal 2021, 15, 100231. [Google Scholar] [CrossRef]
- Zeng, T.Y.; Huang, X. Development, challenges, and future trends of wearable sensors Science & Technology Review 2016, pp. 19–32.
- Lee, J.; Zuo, S.; Chung, Y.; Park, D.; Chang, H.H.; Kim, S. Formant-based acoustic features for cow's estrus detection in audio surveillance system. In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2014, 26-29 Aug. 2014; pp. 236–240. [Google Scholar]
- Bishop, J.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P. Sound Analysis and Detection, and the Potential for Precision Livestock Farming - A Sheep Vocalization Case Study; 2017.
- Paganoni, B.L.; Macleay, C.; Burgel, A.v.; Thompson, A.J.C.E.A. Proximity sensors fitted to ewes and rams during joining can indicate the birth date of lambs. 2020, 170, 105249.
- Smith, D.V.; McNally, J.; Little, B.; Ingham, A.; Schmoelzl, S.J.C.E.A. Automatic detection of parturition in pregnant ewes using a three-axis accelerometer. 2020, 173, 105392.
- Patil, A.; Pawar, C.; Patil, N.; Tambe, R. Smart health monitoring system for animals. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, 8-10 Oct. 2015; pp. 1560–1564. [Google Scholar]
- Norring, M.; Häggman, J.; Simojoki, H.; Tamminen, P.; Winckler, C.; Pastell, M. Short communication: Lameness impairs feeding behavior of dairy cows. Journal of Dairy Science 2014, 97, 4317–4321. [Google Scholar] [CrossRef]
- Chapinal, N.; de Passille, A.M.; Pastell, M.; Hänninen, L.; Munksgaard, L.; Rushen, J. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. Journal of dairy science 2011, 94, 2895–2901. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. Journal of Dairy Science 2016, 99, 7395–7410. [Google Scholar] [CrossRef]
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Ribelytė, I.; Bespalovaitė, A.; Bulvičiūtė, D.; Rutkauskas, A. Alterations in Rumination, Eating, Drinking and Locomotion Behavior in Dairy Cows Affected by Subclinical Ketosis and Subclinical Acidosis. Animals 2024, 14. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K. Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Animal Feed Science and Technology 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Martinez-Rau, L.S.; Chelotti, J.O.; Vanrell, S.R.; Galli, J.R.; Utsumi, S.A.; Planisich, A.M.; Rufiner, H.L.; Giovanini, L.L. A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals. Computers and Electronics in Agriculture 2022, 192, 106569. [Google Scholar] [CrossRef]
- le Roux, S.P.; Marias, J.; Wolhuter, R.; Niesler, T. Animal-borne behaviour classification for sheep (Dohne Merino) and Rhinoceros (Ceratotherium simum and Diceros bicornis). Animal Biotelemetry 2017, 5, 25. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.; Trotter, M. Autonomous on-animal sensors in sheep research: A systematic review. Computers and Electronics in Agriculture 2018, 150, 245–256. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Trotter, M. A systematic review of the potential uses of on-animal sensors to monitor the welfare of sheep evaluated using the Five Domains Model as a framework. Animal Welfare 2019, 28, 407–420. [Google Scholar] [CrossRef]
| Behavior | Definition |
| Feeding | Behaviors exhibited by animals while eating, such as chewing and swallowing. |
| Resting | The relaxed state of an animal, lying down or remaining still, typically to recover energy. |
| Walking | The behavior of an animal when moving, usually in search of food, water, or other resources. |
| Standing | The animal maintaining a standing posture, which may be for observing the surroundings, waiting, or preparing to move. |
| Rumination | The process in ruminant animals (cattle, sheep) of regurgitating and re-chewing food from the stomach. |
| Grazing | Eating forage at ground level with the head down. |
| Socializing | Interactions between animals, such as sniffing or physical contact, typically seen as social behavior in group-living species. |
| Exploring | The behavior of animals investigating their surroundings by sniffing, licking, or observing, especially in new environments or when encountering novel stimuli. |
| Vocalization | The act of producing sounds to communicate, such as expressing pain or calling for companions. |
| Excretion | The behavior of eliminating waste, including urination and defecation. |
| Parturition | Involving uterine contractions, the expulsion of offspring, and observable behaviors such as restlessness, vocalization, and seeking isolation. |
| Mounting | The noticeable sign of estrus, that a female animal standing for mating or standing to be mounted by other one for a couple of seconds. |
| Mating | the copulatory behavior between a male and female for reproduction, typically occurring during the female's estrus and involving behaviors like mounting and courtship. |
| Licking/Grooming | The behavior of licking either their own body or another animal, usually for cleaning or showing affection. |
| Pawing/Kicking | The behavior of animals pawing the ground or kicking, often due to agitation or aggressive emotions (rare in pigs). |
| Fighting | Intense confrontational behavior between animals, often over resources or status, such as wrestling or headbutting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
