Submitted:
08 December 2023
Posted:
11 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals and field of experiment


2.2. Measurement system – hardware equipment
2.2.1. IoT system

2.2.2. Data acquisition system

2.2.3. Feeding area and electronic scale


2.2.4. Environment monitoring system
2.3. Measurement system – software equipment

2.4. Measurement Algorithm

2.5. Calculation of the measurement accuracy of the RFID system
- TP is the number of true positives, representing the instances when RFID registration was obtained and, at the same time, the video confirmed its correctness;
- TN is the number of true negatives, indicating instances when RFID registration was not obtained and, simultaneously, the video confirmed its correctness;
- P is the number of positives, signifying the times when the goose was standing on the scale;
- N is the number of negatives, representing the times when the goose was not standing on the scale;
- FP is the number of false positives, indicating instances when the goose was not present on the scale, but RFID registration occurred;
- FP is the number of false positives. The number of sampling points (s) when the goose was not present on the scale, but the RFID registration occurred.
3. Results
3.1. System Validation and Monitoring Results


3.2. Comparison of video duration and RFID registrations



3.3. The weather station
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bortoň, L.; Štolcová, M. Tools of Precision Agriculture in Dairy Cattle Farms (Nástroje Precizního Zemědělství v Chovech Dojeného Skotu). 2019.
- Zhang, Y.; Ge, Y.; Yang, T.; Guo, Y.; Yang, J.; Han, J.; Gong, D.; Miao, H. An IoT-Based Breeding Egg Identification and Coding System for Selection of High-Quality Breeding Geese. Animals 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Vázquez Diosdado, J.A.; Barker, Z.E.; Hodges, H.R.; Amory, J.R.; Croft, D.P.; Bell, N.J.; Codling, E.A. Classification of Behaviour in Housed Dairy Cows Using an Accelerometer-Based Activity Monitoring System. Anim. Biotelemetry 2015, 3. [Google Scholar] [CrossRef]
- Brahim, A.; Malika, B.; Rachida, A.; Mustapha, L.; Mehammed, D.; Mourad, L. Dairy Cows Real Time Behavior Monitoring by Energy-Efficient Embedded Sensor. In Proceedings of the 2020 2nd International Conference on Embedded and Distributed Systems, EDiS 2020; Institute of Electrical and Electronics Engineers Inc., November 3 2020; pp. 21–26. [CrossRef]
- Maselyne, J.; Saeys, W.; Briene, P.; Mertens, K.; Vangeyte, J.; De Ketelaere, B.; Hessel, E.F.; Sonck, B.; Van Nuffel, A. Methods to Construct Feeding Visits from RFID Registrations of Growing-Finishing Pigs at the Feed Trough. Comput. Electron. Agric. 2016, 128, 9–19. [Google Scholar] [CrossRef]
- Tran, D.N.; Nguyen, T.N.; Khanh, P.C.P.; Tran, D.T. An IoT-Based Design Using Accelerometers in Animal Behavior Recognition Systems. IEEE Sens. J. 2022, 22, 17515–17528. [Google Scholar] [CrossRef]
- Lahlouh, I.; Rerhrhaye, F.; Elakkary, A.; Sefiani, N. Experimental Implementation of a New Multi Input Multi Output Fuzzy-PID Controller in a Poultry House System. Heliyon 2020, 6, e04645. [Google Scholar] [CrossRef] [PubMed]
- Ojo, R.O.; Ajayi, A.O.; Owolabi, H.A.; Oyedele, L.O.; Akanbi, L.A. Internet of Things and Machine Learning Techniques in Poultry Health and Welfare Management: A Systematic Literature Review. Comput. Electron. Agric. 2022, 200, 107266. [Google Scholar] [CrossRef]
- Xue, H.; Li, L.; Wen, P.; Zhang, M. A Machine Learning-Based Positioning Method for Poultry in Cage Environments. Comput. Electron. Agric. 2023, 208, 107764. [Google Scholar] [CrossRef]
- Hewson, C.J. What Is Animal Welfare? Common Definitions and Their Practical Consequences. Can. Vet. J. = La Rev. Vet. Can. 2003, 44, 496–499. [Google Scholar]
- Sitaram, K.A.; Ankush, K.R.; Anant, K.N.; Raghunath, B.R. IoT Based Smart Management of Poultry Farm and Electricity Generation. 2018 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC 2018 2018. [CrossRef]
- Obeidat, H.; Shuaieb, W.; Obeidat, O.; Abd-Alhameed, R. A Review of Indoor Localization Techniques and Wireless Technologies. Wirel. Pers. Commun. 2021, 119, 289–327. [Google Scholar] [CrossRef]
- Denis, S.; Berkvens, R.; Weyn, M. A Survey on Detection, Tracking and Identification in Radio Frequency-Based Device-Free Localization. Sensors 2019, 19, 5329. [Google Scholar] [CrossRef] [PubMed]
- Nirjon, S.; Liu, J.; DeJean, G.; Priyantha, B.; Jin, Y.; Hart, T. COIN-GPS: Indoor Localization from Direct GPS Receiving. In Proceedings of the MobiSys 2014 - Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services; 2014; pp. 301–314. [CrossRef]
- Hu, G.; Zhang, W.; Wan, H.; Li, X. Improving the Heading Accuracy in Indoor Pedestrian Navigation Based on a Decision Tree and Kalman Filter. Sensors 2020, 20, 1578. [Google Scholar] [CrossRef]
- Diaz, E.M.; Ahmed, D.B.; Kaiser, S. A Review of Indoor Localization Methods Based on Inertial Sensors. Geogr. Fingerprinting Data Position. Navig. Syst. Challenges, Exp. Technol. Roadmap, 2018; 311–333. [Google Scholar] [CrossRef]
- Popleteev, A. Indoor Localization Using Ambient FM Radio RSS Fingerprinting: A 9-Month Study. IEEE CIT 2017 - 17th IEEE Int. Conf. Comput. Inf. Technol. 2017, 128–134. [CrossRef]
- Kimoto, R.; Ishida, S.; Yamamoto, T.; Tagashira, S.; Fukuda, A. MuCHLoc: Indoor ZigBee Localization System Utilizing Inter-Channel Characteristics. Sensors 2019, 19, 1645. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Jiang, H.; Zhao, X.; Zhang, C. A Wi-Fi-Based Wireless Indoor Position Sensing System with Multipath Interference Mitigation. Sensors 2019, 19, 3983. [Google Scholar] [CrossRef]
- Bloch, V.; Pastell, M. Monitoring of Cow Location in a Barn by an Open-Source, Low-Cost, Low-Energy Bluetooth Tag System. Sensors 2020, 20, 3841. [Google Scholar] [CrossRef]
- Ingabire, W.; Larijani, H.; Gibson, R.M.; Qureshi, A.-U.-H. LoRaWAN Based Indoor Localization Using Random Neural Networks. Information 2022, 13, 303. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Maselyne, J.; Adrion, F.; Kapun, A.; Hessel, E.F.; Saeys, W.; Van Nuffel, A.; Gallmann, E. Comparing Three Different Passive RFID Systems for Behaviour Monitoring in Grow-Finish Pigs. In Proceedings of the Precision Livestock Farming 2017 - Papers Presented at the 8th European Conference on Precision Livestock Farming, ECPLF 2017; 2017; pp. 622–631.
- de Bruijn, B.G.C.; de Mol, R.M.; Hogewerf, P.H.; van der Fels, J.B. A Correlated-Variables Model for Monitoring Individual Growing-Finishing Pig’s Behavior by RFID Registrations. Smart Agric. Technol. 2023, 4, 100189. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Adrion, F.; Gallmann, E.; Eigenberg, R. Development and Validation of a Low-Frequency RFID System for Monitoring Grow-Finish Pig Feeding and Drinking Behavior.; American Society of Agricultural and Biological Engineers (ASABE), September 21 2018.
- Adrion, F.; Kapun, A.; Eckert, F.; Holland, E.M.; Staiger, M.; Götz, S.; Gallmann, E. Monitoring Trough Visits of Growing-Finishing Pigs with UHF-RFID. Comput. Electron. Agric. 2018, 144, 144–153. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Oliveira, J.; Verhoijsen, W.; Liu, K.; Xin, H. A UHF RFID System for Studying Individual Feeding and Nesting Behaviors of Group-Housed Laying Hens. Trans. ASABE 2017, 60, 1337–1347. [Google Scholar] [CrossRef]
- Krunt, O.; Kraus, A.; Zita, L.; Machová, K.; Chmelíková, E.; Petrásek, S.; Novák, P. The Effect of Housing System and Gender on Relative Brain Weight, Body Temperature, Hematological Traits, and Bone Quality in Muscovy Ducks. Anim. 2022, Vol. 12, Page 370 2022, 12, 370. [Google Scholar] [CrossRef]
- Adrion, F.; Keller, M.; Bozzolini, G.B.; Umstatter, C. Setup, Test and Validation of a UHF RFID System for Monitoring Feeding Behaviour of Dairy Cows. Sensors (Switzerland) 2020, 20, 1–19. [Google Scholar] [CrossRef]
- Hammer, N.; Pfeifer, M.; Staiger, M.; Adrion, F.; Gallmann, E.; Jungbluth, T. Cost-Benefit Analysis of an UHF-RFID System for Animal Identification, Simultaneous Detection and Hotspot Monitoring of Fattening Pigs and Dairy Cows. Landtechnik 2017, 72, 130–155. [Google Scholar] [CrossRef]
- Kapun, A.; Adrion, F.; Gallmann, E. Case Study on Recording Pigs’ Daily Activity Patterns with a Uhf-Rfid System. Agric. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Maselyne, J.; Saeys, W.; De Ketelaere, B.; Mertens, K.; Vangeyte, J.; Hessel, E.F.; Millet, S.; Van Nuffel, A. Validation of a High Frequency Radio Frequency Identification (HF RFID) System for Registering Feeding Patterns of Growing-Finishing Pigs. Comput. Electron. Agric. 2014, 102, 10–18. [Google Scholar] [CrossRef]
| Geese number 4 | Date: 13/07/2021 (8th week) |
| RFID tag code: E2 80 11 60 60 00 02 07 86 ED 9B 1C | Time: 09:45:12 |
![]() |
![]() |
| Geese number | Initial weight | Final weight | Weight gain | Number of registrations | Percent ** | Sensitivity | Specificity | Accuracy | Precision |
| 1 | 3.45 | 7.40 | 3.96 | 15 348 | 1.02% | 100.00% | 99.94% | 99.94% | 96.36% |
| 2 | 3.90 | 7.83 | 3.93 | 18 885 | 1.26% | 82.40% | 99.90% | 99.46% | 80.33% |
| 3 | 4.23 | 8.01 | 3.78 | 19 170 | 1.28% | 96.42% | 99.95% | 99.90% | 97.00% |
| 4 | 3.97 | 5.88 | 1.91 | 19 339 | 1.29% | 99.72% | 99.97% | 99.97% | 98.50% |
| 5 | 4.40 | 7.55 | 3.15 | 18 462 | 1.24% | 70.14% | 99.96% | 99.57% | 92.50% |
| 6 | 2.95 | 4.84 * | 1.89 | 7 598 | 0.49% | 100.00% | 99.96% | 99.96% | 92.47% |
| 7 | 3.30 | 6.14 | 2.85 | 18 276 | 1.22% | 100.00% | 99.96% | 99.96% | 94.72% |
| 8 | 3.87 | 8.35 | 4.48 | 15 740 | 1.06% | 92.51% | 99.90% | 99.79% | 92.70% |
| 9 | 4.03 | 7.96 | 3.93 | 20 764 | 1.38% | 98.44% | 99.85% | 99.81% | 93.92% |
| 10 | 3.68 | 7.49 | 3.82 | 11 709 | 0.78% | 99.70% | 99.94% | 99.94% | 94.57% |
| 11 | 3.39 | 5.97 | 2.58 | 10 772 | 0.72% | 96.87% | 99.99% | 99.93% | 99.36% |
| 12 | 3.56 | 7.95 | 4.39 | 19 980 | 1.33% | 93.74% | 99.95% | 99.77% | 98.11% |
| 13 | 3.73 | 7.85 | 4.13 | 24 518 | 1.64% | 78.03% | 99.99% | 99.49% | 99.48% |
| 14 | 3.97 | 6.69 | 2.71 | 11 372 | 0.75% | 96.04% | 99.95% | 99.91% | 94.79% |
| 15 | 3.76 | 6.21 | 2.45 | 10 417 | 0.69% | 99.38% | 99.93% | 99.92% | 95.41% |
| 16 | 3.50 | 6.95 | 3.46 | 13 406 | 0.90% | 100.00% | 99.96% | 99.96% | 97.44% |
| 17 | 3.10 | 6.49 | 3.39 | 12 249 | 0.81% | 99.31% | 99.96% | 99.95% | 97.30% |
| 18 | 3.70 | 7.02 | 3.32 | 13 028 | 0.87% | 87.94% | 99.94% | 99.80% | 94.25% |
| 19 | 2.72 | 5.82 | 3.10 | 13 984 | 0.93% | 98.45% | 99.96% | 99.94% | 96.95% |
| 20 | 3.31 | 7.42 | 4.11 | 15 027 | 1.00% | 98.51% | 99.95% | 99.93% | 97.55% |
| 21 | 3.34 | 6.48 | 3.14 | 13 633 | 0.91% | 99.31% | 99.92% | 99.91% | 94.49% |
| Weighing system | ||||||||
| Date [dd.mm.yy] | Time [hh:mm:ss] | RFID code number | Average mass [kg] | Photoresistor [V] | Illumination intensity [lux] | |||
| 09/08/2021 | 12:36:31 | E2 80 11 60 60 00 02 07 86 ED E8 5D | 7.279 | 0.481 | 1912.24 | |||
| Weather station | ||||||||
| Date [dd.mm.yy] | Time [hh:mm:ss] | Measurement ID | Precipitation [mm] | ] | Direction [°] | Humidity [%] | Dew point [°C] | Temperature [°C] |
| 09/08/2021 | 12:36:28 | 13375 | 0 | 4.16 | 270 | 57.8 | 14.5 | 22.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


