Submitted:
16 December 2025
Posted:
17 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Approaches to Census-Independent Bottom-Up Population Estimation
2.1. Demographic Datasets
2.2. Geospatial Datasets
2.3. Modelling Frameworks

3. Outputs and Validation
4. Challenges and Future Directions
5. Data Input Challenges
6. Methodological Considerations
7. Implementation Barriers and Opportunities
8. Conclusions
References
- M. Borowitz, J. Zhou, K. Azelton, I.-Y. Nassar, Examining the value of satellite data in halting transmission of polio in Nigeria: A socioeconomic analysis. Data & Policy 5, e16 [2023]. [CrossRef]
- S. P. Cumbane, G. Gidófalvi, Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities. ISPRS International Journal of Geo-Information 10, 421 [2021]. [CrossRef]
- P. G. Greenough, E. L. Nelson, Beyond mapping: a case for geospatial analytics in humanitarian health. Conflict and Health 13, 50 [2019]. [CrossRef]
- T. A. Robin et al., Using spatial analysis and GIS to improve planning and resource allocation in a rural district of Bangladesh. BMJ Global Health 4, e000832 [2019]. [CrossRef]
- USCB [2022] Post-Enumeration Survey and Demographic Analysis Help Evaluate 2020 Census Results. in Census Bureau Releases Estimates of Undercount and Overcount in the 2020 Census (United States Census Bureau).
- S. Randall, Where have all the nomads gone? Fifty years of statistical and demographic invisibilities of African mobile pastoralists. Pastoralism 5, 22 [2015]. [CrossRef]
- UNECE, Guidelines on the Use of Registers and Administrative Data for Population and Housing Censuses (Geneva, 2018].
- UN, The Sustainable Development Goals Report (United Nations, ISBN: 978-92-1-003135-6, New York, USA, 2024].
- UNFPA [2020] The Value of Modeled Population Estimates for Census Planning and Preparation. Technical Guidance note. (United Nations Population Fund (UNFPA), https://www.unfpa.org/sites/default/files/resource-pdf/V2_Technical-Guidance-Note_Value_of_Modeled_Pop_Estimates_in_Census.pdf).
- N. A. Wardrop et al., Spatially disaggregated population estimates in the absence of national population and housing census data. Proceedings of the National Academy of Sciences 115, 3529-3537 [2018]. [CrossRef]
- S. Tadesse [2025] The Evolving Census Landscape: Lessons from the 2020 round and anticipated trends for the 2030 round. in United Nations Statistical Commission, 56th Session, Side Event: Advancing Population and Housing Censuses in the 2030 Round; New York, USA; 5 March 2025 (United Nations Statistics Division (UNSD); https://unstats.un.org/UNSDWebsite/statcom/session_56/side-events/HPC-side-event-5Mar2025/UNSD-PHCs-2020-lessons-and-2030-trends.pdf).
- E. Jensen, T. Kennel [2022] Detailed Coverage Estimates for the 2020 Census Released Today. in America Counts: Stories (United States Census Bureau, March 10, 2022, https://www.census.gov/library/stories/2022/03/who-was-undercounted-overcounted-in-2020-census.html).
- United Nations Economic and Social Council [2024] Future of population and housing censuses and lessons learned from past and current experiences (E/ESCWA/C.1/2024/4]. (UN, New York).
- E. M. Weber et al., Census-independent population mapping in northern Nigeria. Remote Sensing of Environment 204, 786-798 [2018]. [CrossRef]
- R. Hillson et al., Methods for Determining the Uncertainty of Population Estimates Derived from Satellite Imagery and Limited Survey Data: A Case Study of Bo City, Sierra Leone. PLOS ONE 9, e112241 [2014]. [CrossRef]
- D. R. Leasure, W. C. Jochem, E. M. Weber, V. Seaman, A. J. Tatem, National population mapping from sparse survey data: A hierarchical Bayesian modeling framework to account for uncertainty. Proceedings of the National Academy of Sciences 10.1073/pnas.1913050117, 201913050 [2020]. [CrossRef]
- G. Boo et al., High-resolution population estimation using household survey data and building footprints. Nature Communications 13, 1330 [2022]. [CrossRef]
- G. Boo et al., Tackling public health data gaps through Bayesian high-resolution population estimation. PLOS Global Public Health 5[9]: e0005072 [2025]. [CrossRef]
- E. Darin, M. Kuépié, H. Bassinga, G. Boo, A. J. Tatem, La population vue du ciel : quand l’imagerie satellite vient au secours du recensement. Population (french edition) 77, 467-494 [2022]. [CrossRef]
- L. M. Sanchez-Cespedes et al., Social cartography and satellite-derived building coverage for post-census population estimates in difficult-to-access regions of Colombia. Population Studies 78, 3-20 [2024]. [CrossRef]
- WorldPop, Institut National de la Statistique du Mali [2022] Census-cartography-based gridded population estimates for Mali [2020], version 1.0. WorldPop, University of Southampton. doi: 10.5258/SOTON/WP00745; https://wopr.worldpop.org/?MLI/Population/v1.0.
- IPAC [2019] NUMBERS MATTER: THE 2020 CENSUS AND CONFLICT IN PAPUA. (Institute for Policy Analysis of Conflict Jakarta).
- T. A. Sullivan, "Who, What, When, and Where of the Census" in Census 2020: Understanding the Issues, T. A. Sullivan, Ed. (Springer International Publishing, Cham, 2020], 10.1007/978-3-030-40578-6_2, pp. 17-31.
- A. M. Wazir, A. Goujon [2019] Assessing the 2017 Census of Pakistan Using Demographic Analysis: A Sub-National Perspective. in Vienna Institute of Demography Working Papers No. 06/2019 (Vienna Institute of Demography, Vienna).
- C. A. Dooley et al. [2021] Description of methods for the Zambia modelled population estimates from multiple routinely collected and geolocated survey data, version 1.0. WorldPop, University of Southampton. doi: 10.5258/SOTON/WP00707. [CrossRef]
- R. Engstrom, D. Newhouse, V. Soundararajan, Estimating small-area population density in Sri Lanka using surveys and Geo-spatial data. PLOS ONE 15, e0237063 [2020]. [CrossRef]
- C. C. Nnanatu et al. [2025] Efficient Bayesian Hierarchical Small Area Population Estimation Using INLA-SPDE: Integrating Multiple Data Sources and Spatial-Autocorrelation. in Preprints; 10.20944/preprints202501.0588.v1. [CrossRef]
- D. R. Leasure, C. A. Dooley, A. Tatem [2021] A simulation study exploring weighted likelihood models to recover unbiased population estimates from weighted survey data. University of Southampton; doi:10.5258/SOTON/WP00706. [CrossRef]
- C. C. Nnanatu et al., Estimating small area population from health intervention campaign surveys and partially observed settlement data. Nature Communications 16, 4951 [2025]. [CrossRef]
- C. C. Nnanatu et al., Modelled gridded population estimates for Nigeria 2025 version 3.0. WorldPop,.
- University of Southampton; https://dx.doi.org/10.5258/SOTON/WP00782.
- M. Pesaresi, P. Politis, GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal [1975-2030].
- D. Woods et al., WorldPop high resolution, harmonised annual global geospatial covariates. Version 1.0. University of Southampton: Southampton, UK; DOI:10.5258/SOTON/WP00772.
- J. J. Nieves et al., Examining the correlates and drivers of human population distributions across low- and middle-income countries. Journal of The Royal Society Interface 14, 20170401 [2017]. [CrossRef]
- W. Sirko et al. [2021] Continental-scale building detection from high resolution satellite imagery. arXiv:2107.12283.
- Microsoft, Worldwide building footprints derived from satellite imagery (GitHub Repository); https://github.com/microsoft/GlobalMLBuildingFootprints. https://github.com/microsoft/GlobalMLBuildingFootprints.
- Ecopia, Global Feature Extraction: Building footprints; https://www.ecopiatech.com/products/global-feature-extraction.
- X. X. Zhu, S. Chen, F. Zhang, Y. Shi, Y. Wang, GlobalBuildingAtlas: An Open Global and Complete Dataset of Building Polygons, Heights and LoD1 3D Models. arXiv:2506.04106 [2025]. [CrossRef]
- R. Hillson et al., Stratified Sampling of Neighborhood Sections for Population Estimation: A Case Study of Bo City, Sierra Leone. PLoS One 10, e0132850 [2015]. [CrossRef]
- W. C. Jochem et al., Classifying settlement types from multi-scale spatial patterns of building footprints. Environment and Planning B: Urban Analytics and City Science 10.1177/2399808320921208, 2399808320921208 [2020]. [CrossRef]
- C. T. Lloyd et al., Using GIS and Machine Learning to Classify Residential Status of Urban Buildings in Low and Middle Income Settings. Remote Sensing 12, 3847 [2020]. [CrossRef]
- L. Tomás, L. Fonseca, C. Almeida, F. Leonardi, M. Pereira, Urban population estimation based on residential buildings volume using IKONOS-2 images and lidar data. International Journal of Remote Sensing 37, 1-28 [2016]. [CrossRef]
- F. Schug, D. Frantz, S. van der Linden, P. Hostert, Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE 16, e0249044 [2021]. [CrossRef]
- W. Sirko et al., High-Resolution Building and Road Detection from Sentinel-2. arXiv:2310.11622, https://sites.research.google/gr/open-buildings/temporal/.
- OSM, OpenStreetMap. https://www.openstreetmap.org/#map=5/54.91/-3.43.
- B. Herfort, S. Lautenbach, J. Porto de Albuquerque, J. Anderson, A. Zipf, The evolution of humanitarian mapping within the OpenStreetMap community. Scientific Reports 11, 3037 [2021]. [CrossRef]
- GRID3, GRID3 Data Hub. https://data.grid3.org/.
- ACLED, ACLED Data. https://acleddata.com/.
- C. Scher, J. Van Den Hoek, Nationwide conflict damage mapping with interferometric synthetic aperture radar: A study of the 2022 Russia-Ukraine conflict. Science of Remote Sensing https://doi.org/10.1016/j.srs.2025.100217, 100217 [2025]. [CrossRef]
- S. Al Shafian, D. Hu, Integrating Machine Learning and Remote Sensing in Disaster Management: A Decadal Review of Post-Disaster Building Damage Assessment. Buildings 14, 2344 [2024]. [CrossRef]
- L. Dong et al., Defining a city — delineating urban areas using cell-phone data. Nature Cities 1, 117-125 [2024]. [CrossRef]
- N. N. Patel et al., Improving Large Area Population Mapping Using Geotweet Densities. Transactions in GIS 21, 317-331 [2017]. [CrossRef]
- C. F. Brown et al., Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data 9, 251 [2022]. [CrossRef]
- D. Stathakis, P. Baltas, Seasonal population estimates based on night-time lights. Computers, Environment and Urban Systems 68, 133-141 [2018]. [CrossRef]
- D. R. Leasure, C. A. Dooley, M. Bondarenko, A. J. Tatem [2021] peanutButter: An R package to produce rapid-response gridded population estimates from building footprints, version 1.0.0. . (WorldPop, University of Southampton, 10.5258/SOTON/WP00717, https://github.com/wpgp/peanutButter).
- E. Darin, D. R. Leasure, R. Kashyap, How accurate are high resolution settlement maps at predicting population counts in data scarce settings. https://doi.org/10.31219/osf.io/pz38h_v1. [2025]. [CrossRef]
- J. V. Tuccillo et al., LandScan HD: a high-resolution gridded ambient population methodology for the world. Population and Environment 47, 42 [2025]. [CrossRef]
- P. Doupe, E. Bruzelius, J. Faghmous, S. G. Ruchman [2016] Equitable development through deep learning: The case of sub-national population density estimation. in Proceedings of the 7th Annual Symposium on Computing for Development (Association for Computing Machinery, Nairobi, Kenya), p Article 6.
- W. Hu et al. [2019] Mapping Missing Population in Rural India: A Deep Learning Approach with Satellite Imagery. in Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (Association for Computing Machinery, Honolulu, HI, USA), pp 353–359.
- C. Robinson, F. Hohman, B. Dilkina [2017] A Deep Learning Approach for Population Estimation from Satellite Imagery. in Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities (Association for Computing Machinery, Redondo Beach, CA, USA), pp 47–54.
- N. Ahmed et al., Artificial Neural Network and Machine Learning Based Methods for Population Estimation of Rohingya Refugees: Comparing Data-Driven and Satellite Image-Driven Approaches. Vietnam Journal of Computer Science 06, 439-455 [2019]. [CrossRef]
- Neal, S. Seth, G. Watmough, M. S. Diallo, Census-independent population estimation using representation learning. Scientific Reports 12, 5185 [2022]. [CrossRef]
- C. Pezzulo et al., Sub-national mapping of population pyramids and dependency ratios in Africa and Asia. Scientific Data 4, 170089 [2017]. [CrossRef]
- V. A. Alegana et al., Fine resolution mapping of population age-structures for health and development applications. Journal of The Royal Society Interface 12, 20150073 [2015]. [CrossRef]
- C. C. Nnanatu, S. Chaudhuri, A. N. Lazar, A. J. Tatem [2025] jollofR: A Bayesian statistical model-based approach for disaggregating small area population estimates by demographic characteristics. R package version 0.3.0, https://github.com/wpgp/jollofR/.
- C. Nnanatu et al. [2024] Modelled gridded population estimates for Cameroon 2022. Version 1.0, University of Southampton, 17 Jun 2024, DOI: 10.5258/SOTON/WP00784, https://data.worldpop.org/repo/wopr/CMR/population/v1.0/.
- M. Viljanen, L. Meijerink, L. Zwakhals, J. van de Kassteele, A machine learning approach to small area estimation: predicting the health, housing and well-being of the population of Netherlands. International Journal of Health Geographics 21, 4 [2022]. [CrossRef]
- UCLA-DRC Health Research and Training Program, Kinshasa School of Public Health, Kinshasa, Kongo Central and former Bandundu microcensus survey data [2017-18].
- Institut de la Statistique du Mali, Cartographie du RGPH5.
- H. R. Chamberlain, A. N. Lazar, A. J. Tatem, High-resolution estimates of social distancing feasibility, mapped for urban areas in sub-Saharan Africa. Scientific Data 9, 711 [2022]. [CrossRef]
- V. A. Alegana, C. Pezzulo, A. J. Tatem, B. Omar, A. Christensen, Mapping out-of-school adolescents and youths in low- and middle-income countries. Humanities and Social Sciences Communications 8, 213 [2021]. [CrossRef]
- P. M. Macharia et al., Modelling geographic access and school catchment areas across public primary schools to support subnational planning in Kenya. Children's Geographies 21, 832-848 [2023]. [CrossRef]
- A. Smith et al., New estimates of flood exposure in developing countries using high-resolution population data. Nature Communications 10, 1814 [2019]. [CrossRef]
- F. Hierink, N. Rodrigues, M. Muñiz, R. Panciera, N. Ray, Modelling geographical accessibility to support disaster response and rehabilitation of a healthcare system: an impact analysis of Cyclones Idai and Kenneth in Mozambique. BMJ Open 10, e039138 [2020]. [CrossRef]
- S. H. Qader et al., Using gridded population and quadtree sampling units to support survey sample design in low-income settings. International Journal of Health Geographics 19, 10 [2020]. [CrossRef]
- J. Cajka, A. Safaa, R. Jamie, J. and Allpress, Geo-sampling in developing nations. International Journal of Social Research Methodology 21, 729-746 [2018].
- O. Borkovska et al., Developing High-Resolution Population and Settlement Data for Impactful Malaria Interventions in Zambia. Journal of Environmental and Public Health 2022, 2941013 [2022]. [CrossRef]
- H. R. Chamberlain, C. A. Dooley, A. J. Tatem, Assessing the accuracy of census-independent small area modelled population datasets.
- 79. . (in preparation).
- J. M. Davis, M. Wilfahrt, Enumerator Experiences in Violent Research Environments. Comparative Political Studies 57, 675-709 [2024]. [CrossRef]
- DESA [2019] Guidelines on the use of electronic data collection technologies in population and housing censuses. (United Nations, New York, January 2019, Department of Economic and Social Affairs Statistics Division).
- H. Hogan, Distrust in the Governments Brings Risk to the Census. Harvard Data Science Review 2, https://doi.org/10.1162/99608f99692.99611f99603e99977 [2020]. [CrossRef]
- H. B. Aguma et al., Mass distribution campaign of long-lasting insecticidal nets (LLINs) during the COVID-19 pandemic in Uganda: lessons learned. Malar J 22, 310 [2023]. [CrossRef]
- A. J. Tatem, J. Espey, Global population data is in crisis – here’s why that matters. http://dx.doi.org/https://theconversation.com/global-population-data-is-in-crisis-heres-why-that-matters-251751 (March 26, 2025].
- P. Deville et al., Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences 111, 15888-15893 [2014]. [CrossRef]
- N. W. Ruktanonchai, C. W. Ruktanonchai, J. R. Floyd, A. J. Tatem, Using Google Location History data to quantify fine-scale human mobility. International Journal of Health Geographics 17, 28 [2018]. [CrossRef]
- M. Sinclair et al., Assessing the socio-demographic representativeness of mobile phone application data. Applied Geography 158, 102997 [2023]. [CrossRef]
- D. R. Leasure et al., Nowcasting Daily Population Displacement in Ukraine through Social Media Advertising Data. Population and Development Review 49, 231-254 [2023]. [CrossRef]
- G. Chi, G. J. Abel, D. Johnston, E. Giraudy, M. Bailey, Measuring global migration flows using online data. Proceedings of the National Academy of Sciences 122, e2409418122 [2025]. [CrossRef]
- Flowminder Foundation, R. Hosner, Z. Strain-Fajth, V. Lefebvre [2023] Using survey data to correct for representation biases in mobility indicators derived from mobile operator data to produce high-frequency estimates of population and internal migration. in Netmob 2023, https://doi.org/10.5281/zenodo.8414414. [CrossRef]
- H. R. Chamberlain et al., Building footprint data for countries in Africa: To what extent are existing data products comparable? Computers, Environment and Urban Systems 110, 102104 [2024]. [CrossRef]
- M. Minghini, S. Thabit Gonzalez, L. Gabrielli, Pan-European open building footprints: analysis and comparison in selected countries. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLVIII-4/W12-2024, 97-103 [2024]. [CrossRef]
- H. R. Chamberlain et al., Assessing the impact of building footprint dataset choice for health programme planning: a case study of indoor residual spraying (IRS) in Zambia. International Journal of Health Geographics 24, 13 [2025]. [CrossRef]
- C. Visée et al., Addressing bias in national population density models: Focusing on rural Senegal. PLOS ONE 19, e0310809 [2024]. [CrossRef]
- D. R. Thomson et al., Evaluating the Accuracy of Gridded Population Estimates in Slums: A Case Study in Nigeria and Kenya. Urban Science 5, 48 [2021]. [CrossRef]
- M. Owusu et al., Towards user-driven earth observation-based slum mapping. Computers, Environment and Urban Systems 89, 101681 [2021]. [CrossRef]
- UNHCR [2024] Global Trends: Forced displacement in 2023. ed U. N. H. C. f. Refugees (United Nations High Commissioner for Refugees, Copenhagen, Denmark).
- C. A. Dooley, W. C. Jochem, A. Sorichetta, A. N. Lazar, A. Tatem, Description of methods for South Sudan 2020 gridded population estimates from census projections adjusted for displacement, version 2.0. WorldPop, University of Southampton. doi: 10.5258/SOTON/WP00710. [2021].
- J. A. Quinn et al., Humanitarian applications of machine learning with remote-sensing data: review and case study in refugee settlement mapping. Philos Trans A Math Phys Eng Sci 376 [2018]. [CrossRef]
- E. Darin et al., Mapping refugee populations at high resolution by unlocking humanitarian administrative data. Journal of International Humanitarian Action 9, 14 [2024]. [CrossRef]
- C. Donegan, Y. Chun, A. E. Hughes, Bayesian estimation of spatial filters with Moran’s eigenvectors and hierarchical shrinkage priors. Spatial Statistics 38, 100450 [2020]. [CrossRef]
- K. D. Mets, D. Armenteras, L. M. Dávalos, Spatial autocorrelation reduces model precision and predictive power in deforestation analyses. Ecosphere 8, e01824 [2017]. [CrossRef]
- S. Openshaw, The modifiable areal unit problem. Concepts and techniques in modern geography [1984].
- J. Paige, G.-A. Fuglstad, A. Riebler, J. Wakefield, Spatial aggregation with respect to a population distribution: Impact on inference. Spatial Statistics 52, 100714 [2022]. [CrossRef]
- D. Manley, "Scale, Aggregation, and the Modifiable Areal Unit Problem" in Handbook of Regional Science, M. M. Fischer, P. Nijkamp, Eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014], 10.1007/978-3-642-23430-9_69, pp. 1157-1171. [CrossRef]
- M. O. Kimberley, M. S. Watt, D. Harrison, Characterising prediction error as a function of scale in spatial surfaces of tree productivity. New Zealand Journal of Forestry Science 47, 19 [2017]. [CrossRef]
- Project on Government Oversight [2023] Dollars and Demographics: How Census Data Shapes Federal Funding Distribution. (POGO: Washington DC).
- T. Krieger, D. Meierrieks, Population size and the size of government. European Journal of Political Economy 61, 101837 [2020].
- C. Tuholske et al., Implications for Tracking SDG Indicator Metrics with Gridded Population Data. Sustainability 13, 7329 [2021]. [CrossRef]
- E. Darin, Demographic figures at risk in the digital era: Resisting commodification, reclaiming the common good. Big data & society Doi: 10.1177/20539517251403948 [2025]. [CrossRef]
- A. M. van der Bles et al., Communicating uncertainty about facts, numbers and science. Royal Society Open Science 6, 181870 [2019].
- V. Kudakwashe Paul, H. Kate, G. Matthew, P. Helen, K. Lynda, Local ownership of health policy and systems research in low-income and middle-income countries: a missing element in the uptake debate. BMJ Global Health 4, e001523 [2019].
- B. Knittel et al., Critical barriers to sustainable capacity strengthening in global health: a systems perspective on development assistance. Gates Open Res 6, 116 [2022].
- B. Harrell-Bond, E. Voutira, M. Leopold, Counting the Refugees: Gifts, Givers, Patrons and Clients *. Journal of Refugee Studies 5, 205-225 [1992]. [CrossRef]
- C. N. Mayemba et al., A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs (ver 1, 25 April 2024]. arXiv:2404.16921 [2024].
- Institut National de la Statistique et de la Démographie du Burkina Faso, VOLUME I : EVALUATION DE LA QUALITE DES DONNEES, ETAT, STRUCTURE ET DYNAMIQUE DE LA POPULATION; https://www.insd.bf/fr/resultats.
- Institut de la Statistique du Mali [2023] Resultats Globaux du RGPH5, https://www.instat-mali.org/laravel-filemanager/files/shares/rgph/rapport-resultats-globaux-rgph5_rgph.pdf.
- PNG National Statistical Office (Population Estimates 2021. https://www.nso.gov.pg/statistics/population/.
- C. Ninrew [2023] S. Sudan population is 12.4 million - govt estimates. https://www.eyeradio.org/s-sudan-population-is-12-4-million-govt-estimates/.
- WHO, UNICEF [2023] Geo-Enabled Microplanning Handbook: A product of the WHO-UNICEF COVAX GIS Working Group.
- UNICEF [2025] Reach the Unreached - Geospatial modelling mapping methods. (https://github.com/unicef-drp/reach-the-unreached?tab=readme-ov-file).
- E. Darin, D. R. Leasure, A. J. Tatem [2023] Statistical population modelling for census support. (United Nations Population Fund (UNFPA), Leverhulme Centre for Demographic Science, University of Oxford, and WorldPop, University of Southampton. https://wpgp.github.io/bottom-up-tutorial/, doi:10.5281/zenodo.7945266].
- J. M. Espey, A. J. Tatem, D. R. Thomson, Disappearing people: A global demographic data crisis threatens public policy. Science 388, 1277-1280 [2025]. [CrossRef]
- A. Gutierrez [2024] ECLAC and UNFPA approach to model populations in Latin America and the Caribbean, IAOS-ISI, Mexico City, https://www.inegi.org.mx/eventos/2024/iaos-isi/doc/34.pdf.


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
