Submitted:
17 June 2025
Posted:
18 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction: Artificial Intelligence in Medicine
2. AI in Nuclear Cardiology
3. Final Remarks and Perspectives
Abbreviations
| AI | Artificial Intelligence |
| ATTR | Transthyretin Amyloidosis |
| AUC | Area Under Curve |
| CAD | Coronary Artery Disease |
| DL | Deep Learning |
| ML | Machine Learning |
| MPI | Myocardial Perfusion Imaging |
| PET | Positron Emission Tomography |
| SPECT | Single-Photon Emission Computed Tomography. |
References
- Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiang, Y.; Zhi, H.; et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; et al. A guide to deep learning in healthcare. Nat Med 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Emanuel, E. J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N Engl J Med 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, USA, 2016. [Google Scholar]
- Bishop, C. M. Pattern Recognition and Machine Learning; Springer: New York, USA, 2006. [Google Scholar]
- Sokolova, M.; Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Inf Process Manage 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 2020, 21. [Google Scholar] [CrossRef]
- Erickson, B. J.; Korfiatis, P.; Akkus, Z.; et al. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B. E.; et al. A survey on deep learning in medical image analysis. Med Image Anal 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Irvin, J.; Ball, R. L.; et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018, 15. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K. W.; Rosenson, R. S.; et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J 2019, 40, 2058–2073. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Katafuchi, T.; Uehara, T.; et al. Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull's-eye images. J Nucl Med 1992, 33, 272–6. [Google Scholar] [PubMed]
- Khorsand, A.; Haddad, M.; Graf, S.; et al. Automated assessment of dipyridamole 201Tl myocardial SPECT perfusion scintigraphy by case-based reasoning. J Nucl Med 2001, 42, 189–93. [Google Scholar]
- Garcia, E.V.; Cooke, C.D.; Folks, R.D.; et al. Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies. J Nucl Med 2001, 42, 1185–91. [Google Scholar] [PubMed]
- Garcia, E.V.; Klein, J.L.; Moncayo, V.; et al. Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging. J Nucl Cardiol 2020, 27, 1652–1664. [Google Scholar] [CrossRef]
- Arsanjani, R.; Xu, Y.; Dey, D.; et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol 2013, 20, 553–62. [Google Scholar] [CrossRef]
- Kaplan Berkaya, S.; Ak Sivrikoz, I.; Gunal, S. Classification models for SPECT myocardial perfusion imaging. Comput Biol Med 2020, 123, 103893. [Google Scholar] [CrossRef]
- Nakajima, K.; Maruyama, K. Nuclear cardiology data analyzed using machine learning. Ann Nucl Cardiol 2022, 8, 80–85. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Apostolopoulos, D.I.; Spyridonidis, T.I.; et al. Multi-input deep learning approach for cardiovascular disease diagnosis using myocardial perfusion imaging and clinical data. Phys Med 2021, 84, 168–177. [Google Scholar] [CrossRef]
- de Souza Filho, E.M.; Fernandes, F.A.; Wiefels, C.; et al. Machine learning algorithms to distinguish myocardial perfusion SPECT polar maps. Front Cardiovasc Med 2021, 11(8), 741667. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Singh, A.; Otaki, Y.; et al. Mitigating bias in deep learning for diagnosis of coronary artery disease from myocardial perfusion SPECT images. Eur J Nucl Med Mol Imaging 2023, 50, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.P.; Shrestha, S.; Berthon, B.; et al. Proposed Requirements for cardiovascular Imaging-Related machine learning Evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc Imaging 2020, 13, 2017–2035. [Google Scholar] [CrossRef]
- Slomka, P.J.; Betancur, J.; Liang, J.X.; et al. Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). J Nucl Cardiol 2020, 27, 1010–1021. [Google Scholar] [CrossRef]
- Betancur, J.; Commandeur, F.; Motlagh, M.; et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 2018, 11, 1654–63. [Google Scholar] [CrossRef] [PubMed]
- Betancur, J.; Hu, L.H.; Commandeur, F.; et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med 2019, 60, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, J.; Miller, E.J.; et al. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning. Eur J Nucl Med Mol Imaging 2021, 48, 2793–2800. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Hauser, M.T.; Sharir, T.; et al. Machine learning to predict abnormal myocardial perfusion from pre-test features. J Nucl Cardiol 2022, 29, 2393–2403. [Google Scholar] [CrossRef]
- Otaki, Y.; Singh, A.; Kavanagh, P.; et al. Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease. JACC Cardiovasc Imaging 2022, 15, 1091–1102. [Google Scholar] [CrossRef]
- Hu, L.H.; Betancur, J.; Sharir, T.; et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020, 21, 549–559. [Google Scholar] [CrossRef]
- Rios, R.; Miller, R.J.H.; Hu, L.H.; et al. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res 2022, 118, 2152–2164. [Google Scholar] [CrossRef]
- Betancur, J.; Otaki, Y.; Motwani, M.; et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging 2018, 11, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Miller, R.J.H.; Otaki, Y.; et al. Direct risk assesment from myocardial perfusion imaging using explainable deep learning. JACC Cardiovasc Imaging 2023, 16, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.H.; Bednarski, B.P.; Pieszko, K.; et al. Clinical phenotypes among patients with normal cardiac perfusion using unsupervised learning: a retrospective observational study. EBioMedicine 2024, 99, 104930. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.H.; Lemley, M.; Shanbhag, A.; et al. The updated Registry of fast myocardial perfusion imaging with next-generation SPECT (REFINE SPECT 2.0). J Nucl Med 2024, 65, 1795–1801. [Google Scholar] [CrossRef]
- Juarez-Orozco, L.E.; Knol, R.J.J.; Sanchez-Catasus, C.A.; et al. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia. J Nucl Cardiol 2020, 27, 147–155. [Google Scholar] [CrossRef]
- Juarez-Orozco, L.E.; Martinez-Manzanera, O.; van der Zant, F.M.; et al. Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging 2020, 13, 180–182. [Google Scholar] [CrossRef]
- Singh, A.; Kwiecinski, J.; Miller, R.J.H.; et al. Deep learning for explainable estimation of mortality risk from myocardial positron emission tomography images. Circ Cardiovasc Imaging 2022, 15, e014526, Erratum in: Circ Cardiovasc Imaging 2022, 15, e000078. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Tzolos, E.; Meah, M.N.; et al. Machine learning with 18F-sodium fluoride PET and quantitative plaque analysis on CT angiography for the future risk of myocardial infarction. J Nucl Med 2022, 63, 158–165. [Google Scholar] [CrossRef]
- Delbarre, M.A.; Girardon, F.; Roquette, L.; et al. Deep learning on bone scintigraphy to detect abnormal cardiac uptake at risk of cardiac amyloidosis. JACC Cardiovasc Imaging 2023, 16, 1085–1095. [Google Scholar] [CrossRef]
- Halme, H.L.; Ihalainen, T.; Suomalainen, O.; et al. Convolutional neural networks for detection of transthyretin amyloidosis in 2D scintigraphy images. EJNMMI Res 2022, 12, 27. [Google Scholar] [CrossRef]
- Salimi, Y.; Shiri, I.; Mansouri, Z.; et al. Artificial intelligence-based cardiac transthyretin amyloidosis detection and scoring in scintigraphy imaging: multi-tracer, multi-scanner, and multi-center development and evaluation study. Eur J Nucl Med Mol Imaging 2025, Feb 5. Epub ahead of print. [Google Scholar] [CrossRef]
- Spielvogel, C.P.; Haberl, D.; Mascherbauer, K.; et al. Diagnosis and prognosis of abnormal cardiac scintigraphy uptake suggestive of cardiac amyloidosis using artificial intelligence: a retrospective, international, multicentre, cross-tracer development and validation study. Lancet Digit Health 2024, 6, e251–e260. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.H.; Shanbhag, A.; Michalowska, A.M.; et al. Deep learning-enabled quantification of 99mTc-Pyrophosphate SPECT/CT for cardiac amyloidosis. J Nucl Med 2024, 65, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Togo, R.; Hirata, K.; Manabe, O.; et al. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comput Biol Med 2019, 104, 81–86. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
