Submitted:
06 June 2025
Posted:
09 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Personality Traits and Technology
3. Personality Traits and Technology Adoption
4. Information and Communication Technologies
5. Personality Traits and Transportation Technologies
6. Artificial Intelligence
7. Medical Technologies
8. AI, Medical Technologies and Well-Being
9. Discussion
9.1. Healthcare
9.2. Transportation
10. Last Words
References
- L. Casal-Otero, A. Catala, C. Fernández-Morante, M. Taboada, B. Cebreiro, S. Barro, AI literacy in K-12: a systematic literature review, Int. J. STEM Educ. 10 (2023) 29. [CrossRef]
- S. Kaggwa, T.F. Eleogu, F. Okonkwo, O.A. Farayola, P.U. Uwaoma, A. Akinoso, AI in decision making: transforming business strategies, Int. J. Res. Sci. Innov. 10 (2024) 423-444. [CrossRef]
- T. Davenport, R. Kalakota, The potential for artificial intelligence in healthcare, Future Healthc. J. 6 (2019) 94–98. [CrossRef]
- L.R. Goldberg, Language and individual differences: The search for universals in personality lexicons, Rev. Pers. Soc. Psychol. 2 (1981) 141–165. [CrossRef]
- R.R. McCrae, P.T. Costa, Validation of the five-factor model of personality across instruments and observers, J. Personality Soc. Psychol. 52 (1987) 81–90. [CrossRef]
- J. Bowlby, Attachment and Loss, vol. 1: Attachment, Basic Books, New York, 1969.
- A.W. Kruglanski, D.M. Webster, A. Klem, Motivated resistance and openness to persuasion in the presence or absence of prior information, J. Pers. Soc. Psychol. 65 (1993) 861–876. [CrossRef]
- A.W. Kruglanski, S. Fishman, The need for cognitive closure, in: M.R. Leary, R.H. Hoyle (Eds.), Handbook of Individual Differences in Social Behavior, Guilford Press, New York, 2009, pp. 343–353.
- A.R. Cohen, E. Stotland, D.M. Wolfe, An experimental investigation of need for cognition, J. Abnorm. Soc. Psychol. 51 (1955) 291–294. [CrossRef]
- R.E. Petty, P. Briñol, C. Loersch, M.J. McCaslin, The need for cognition, in: M.R. Leary, R.H. Hoyle (Eds.), Handbook of Individual Differences in Social Behavior, Guilford Press, New York, 2009, pp. 318–329.
- M. Zuckerman, Dimensions of sensation seeking, J. Consult. Clin. Psychol. 36 (1971) 45–52. [CrossRef]
- M. Zuckerman, Sensation Seeking: Beyond the Optimal Level of Arousal, L. Erlbaum Associates, 1979.
- D. Paulhus, K. Williams, The Dark Triad of personality: Narcissism, Machiavellianism, and psychopathy, J. Res. Pers. 36 (2002) 556–563. [CrossRef]
- A. Furnham, S.C. Richards, D.L. Paulhus, The Dark Triad of personality: A 10-year review, Soc. Pers. Psychol. Compass 7 (2013) 199-216. [CrossRef]
- D.N. Jones, A.J. Figueredo, The core of darkness: Uncovering the heart of the Dark Triad, European J. Pers. 27 (2013) 521–531. [CrossRef]
- E. Piechurska-Kuciel, Personality: Definitions, approaches and theories, in: The Big Five in SLA, Springer International Publishing AG, 2020, pp. 1–25. [CrossRef]
- S. Devaraj, R.F. Easley, J.M. Crant, How does personality matter? Relating the five-factor model to technology acceptance and use, Inf. Syst. Res. 19 (2008) 93–105. [CrossRef]
- C. Ross, E.S. Orr, M. Sisic, J.M. Arseneault, M.G. Simmering, R.R. Orr, Personality and motivations associated with Facebook use, Comput. Hum. Behav. 25 (2009) 578–586. [CrossRef]
- T. Barnett, A.W. Pearson, R. Pearson, F.W. Kellermanns, Five-factor model personality traits as predictors of perceived and actual usage of technology, European J. Inf. Syst. 24 (2015) 374–390. [CrossRef]
- A. Bianchi, J.G. Phillips, Psychological predictors of problem mobile phone use, CyberPsychology Behav. 8 (2005) 39–51. [CrossRef]
- K. Behrenbruch, M. Söllner, J.M. Leimeister, L. Schmidt, Understanding diversity – The impact of personality on technology acceptance, Hum.-Computer Interact. – INTERACT 2013, 8120 (2013) 306–313. [CrossRef]
- M. Manolika, R. Kotsakis, M. Matsiola, G. Kalliris, Direct and indirect associations of personality with audiovisual technology acceptance through general self-efficacy, Psychol. Rep. 125 (2022) 1165–1185. [CrossRef]
- F. Alqahtani, S. Meier, R. Orji, Personality-based approach for tailoring persuasive mental health applications, User Model. User-Adapt. Interact. 32 (2022) 253–295. [CrossRef]
- O. Gillath, T. Ai, M.S. Branicky, S. Keshmiri, R.B. Davison, R. Spaulding, Attachment and trust in artificial intelligence, Comput. Hum. Behav. 115 (2021) e106607. [CrossRef]
- J. Bowlby, The Bowlby-Ainsworth attachment theory, Behav. Brain Science 2 (1979) 637–638. [CrossRef]
- P.R. Shaver, M. Mikulincer, An overview of adult attachment theory, in: J.H. Obegi, E. Berant (Eds.), Attachment Theory and Research in Clinical Work with Adults, Guilford Press, New York, 2009, pp. 17–45.
- R.P. Fearon, G.I. Roisman, Attachment theory: progress and future directions, Curr. Opin. Psychol. 15 (2017) 131–136. [CrossRef]
- D. Howe, Attachment theory, in: M. Gray, S.A. Webb (Eds.), Social Work Theories and Methods, Sage, London, 2012, p. 75.
- J.N. Morey, A.L. Gentzler, B. Creasy, A.M. Oberhauser, D. Westerman, Young adults’ use of communication technology within their romantic relationships and associations with attachment style, Comput. Hum. Behav. 29 (2013) 1771-1778. https:/doi.org/10.1016/j.chb.2013.02.019.
- Y.A. Amichai-Hamburger, Y. Sela, S. Kaufman, T. Wellingstein, N. Stein, J. Sivan, Personality and the autonomous vehicle: Overcoming psychological barriers to the driverless car, Technol. Society 69 (2022) e101971. [CrossRef]
- A.W. Kruglanski, D.M. Webster, Motivated closing of the mind: “Seizing” and “Freezing,” Psychol. Rev. 103 (1996) 263–283. [CrossRef]
- Y. Amichai-Hamburger, A. Fine, A. Goldstein, The impact of Internet interactivity and need for closure on consumer preference, Comput. Hum. Behav. 20 (2004) 103–117. [CrossRef]
- J.T. Cacioppo, R.E. Petty, The need for cognition, J. Personal. Soc. Psychol. 42 (1982) 116–131. [CrossRef]
- Y. Amichai-Hamburger, O. Kaynar, A. Fine, The effects of need for cognition on Internet use, Comput. Hum. Behav. 23 (2007) 880–891. [CrossRef]
- Y. Amichai-Hamburger, H. Kaplan, N. Dorpatcheon, Click to the past: The impact of extroversion by users of nostalgic websites on the use of Internet social services, Comput. Hum. Behav. 24 (2008) 1907–1912. [CrossRef]
- M. Zuckerman, The psychophysiology of sensation seeking, J. Personal. 58 (1990) 313–345. [CrossRef]
- T. Greitemeyer, A. Kastenmüller, HEXACO, the Dark Triad, and ChatGPT: Who is willing to commit academic cheating?, Heliyon 9 (2023) e19909. [CrossRef]
- Y. Amichai-Hamburger, Internet and personality, Comput. Hum. Behav. 18 (2002) 1–10. [CrossRef]
- Y. Amichai-Hamburger, Personality, individual differences, and Internet use, Oxf. Handb. Internet Psychol. (2007) 187–204. [CrossRef]
- T. Lynn, L. Muzellec, B. Caemmerer, D. Turley, Social network sites: Early adopters’ personality and influence, J. Prod. Brand Manag. 26 (2017) 42–51. [CrossRef]
- E.M. Rogers, Diffusion of Innovations, Free Press, New York, 1962.
- P. Tobbin, J. Adjei, Understanding the characteristics of early and late adopters of technology: The case of mobile money, Int. J. E-Serv. Mob. Appl. 4 (2012) 37–54. [CrossRef]
- C. Catalini, C. Tucker, When early adopters don't adopt, Science 357 (2017) 135–136. [CrossRef]
- M. Irfan, M. Ahmad, Relating consumers’ information and willingness to buy electric vehicles: Does personality matter?, Transp. Res. Part D Transp. Environ. 100 (2021) e103049. [CrossRef]
- W. Qu, H. Sun, Y. Ge, The effects of trait anxiety and the Big Five personality traits on self-driving car acceptance, Transp. 48 (2021) 2663–2679. [CrossRef]
- F. Sudzina, M. Dobes, A. Pavlicek, Towards the psychological profile of cryptocurrency early adopters: Overconfidence and self-control as predictors of cryptocurrency use, Curr. Psychol. 42 (2023) 8713–8717. [CrossRef]
- H. Cho, B. Park, Testing the moderating role of need for cognition in smartphone adoption, Behav. Inf. Technol. 33 (2014) 704–715. [CrossRef]
- L. Iaia, S. Leonelli, F. Masciarelli, M. Christofi, S.C. Cooper, The malevolent side of masstige consumers’ behavior: The role of Dark Triad and technology propensity, J. Bus. Res. 149 (2022) 954–966. [CrossRef]
- M.J. Aplin-Houtz, S. Leahy, S. Willey, et al., Tales from the dark side of technology acceptance: The Dark Triad and the Technology Acceptance Model, Employ. Respons. Rights J. 36 (2024) 421–453. [CrossRef]
- M.S. Park, J.K. Shin, Y. Ju, Attachment styles and electronic word of mouth (e-WOM) adoption on social networking sites, J. Bus. Res. 99 (2019) 398–404. [CrossRef]
- L.M. Anthony, M.C. Clarke, S.J. Anderson, Technophobia and personality subtypes in a sample of South African university students, Comput. Hum. Behav. 16 (2000) 31–44. [CrossRef]
- A.R. Korukonda, Differences that do matter: A dialectic analysis of individual characteristics and personality dimensions contributing to computer anxiety, Comput. Hum. Behav. 23 (2007) 1921–1942. [CrossRef]
- J. Hou, Y. Wu, E. Harrell, Reading on paper and screen among senior adults: Cognitive map and technophobia, Front. Psychol. 8 (2017) e2225. [CrossRef]
- R.R. Sinkovics, B. Stöttinger, B.B. Schlegelmilch, S. Ram, Reluctance to use technology-related products: Development of a technophobia scale, Thunderbird Int. Bus. Rev. 44 (2002) 477–494. [CrossRef]
- L. Smith, ICT, Engl. Educ. 48 (2014) 63–75. [CrossRef]
- C.M. Zuppo, Defining ICT in a boundaryless world: The development of a working hierarchy, Int. J. Manag. Inf. Technol. 4 (2012) 13. [CrossRef]
- We Are Social, Digital 2021 July Global Statshot Report, We Are Social, New York, 2021. https://wearesocial.com/au/blog/2021/07/digital-2021-july-global-statshot-digital-audiences-swell-but-there-may-be-trouble-ahead/, (accessed 14 March 2025).
- L. Braghieri, R.E. Levy, A. Makarin, Social media and mental health, Am. Econ. Rev. 112 (2022) 3660–3693. [CrossRef]
- J. Fardouly, N.R. Magson, R.M. Rapee, C.J. Johnco, E.L. Oar, The use of social media by Australian preadolescents and its links with mental health, J. Clin. Psychol. 76 (2020) 1304–1326. [CrossRef]
- H. Stead, P.A. Bibby, Personality, fear of missing out and problematic internet use and their relationship to subjective well-being, Comput. Hum. Behav. 76 (2017) 534–540. [CrossRef]
- Y. Amichai-Hamburger, G. Wainapel, S. Fox, "On the Internet no one knows I'm an introvert": Extroversion, neuroticism, and Internet interaction, Cyberpsychol. Behav. 5 (2002) 125–128. [CrossRef]
- J.M. Twenge, G.N. Martin, Gender differences in associations between digital media use and psychological well-being: Evidence from three large datasets, J. Adolesc. 79 (2020) 91–102. [CrossRef]
- E.A. Witt, A.J. Massman, L.A. Jackson, Trends in youth’s videogame playing, overall computer use, and communication technology use: The impact of self-esteem and the Big Five personality factors, Comput. Hum. Behav. 27 (2011) 763–769. [CrossRef]
- T. Bowden-Green, J. Hinds, A. Joinson, How is extraversion related to social media use? A literature review, Pers. Individ. Differ. 164 (2020) e110040. [CrossRef]
- Y. Amichai-Hamburger, G. Vinitzky, Social network use and personality, Comput. Hum. Behav. 26 (2010) 1289–1295. [CrossRef]
- M. Akbari, M. Seydavi, M.M. Spada, S. Mohammadkhani, S. Jamshidi, A. Jamaloo, F. Ayatmehr, The Big Five personality traits and online gaming: A systematic review and meta-analysis, J. Behav. Addict. 10 (2021) 611–625. [CrossRef]
- B. Rathakrishnan, S.S. Bikar Singh, A. Yahaya, Gaming preferences and personality among school students, Children (Basel, Switz.) 10 (2023) 428. [CrossRef]
- J.A. Naslund, A. Bondre, J. Torous, K.A. Aschbrenner, Social media and mental health: Benefits, risks, and opportunities for research and practice, J. Technol. Behav. Sci. 5 (2020) 245–257. [CrossRef]
- Y. Amichai-Hamburger, S. Etgar, Personality and Internet use: The case of introversion and extroversion, in: A. Attrill-Smith, C. Fullwood, M. Keep, D.J. Kuss (Eds.), The Oxford Handbook of Cyberpsychology, Oxford University Press, Oxford, 2019. [CrossRef]
- P.A. Rosen, D.H. Kluemper, The impact of the Big Five personality traits on the acceptance of social networking websites, in: AMCIS 2008 Proceedings, Americas Conference on Information Systems, Toronto, Canada, 2008, p. 274.
- Y. Amichai-Hamburger, Potential and promise of online volunteering, Comput. Hum. Behav. 24 (2008) 544–562. [CrossRef]
- Beyens, J.L. Pouwels, I.I. van Driel, L. Keijsers, P.M. Valkenburg, Social media use and adolescents’ well-being: Developing a typology of person-specific effect patterns, Commun. Res. 48 (2021) 1007–1030. [CrossRef]
- T. Hayat, T. Samuel-Azran, S. Goldberg, Y. Amichai-Hamburger, Introversion-extraversion and online course satisfaction, Online Inf. Rev. 48 (2023) 409–424. [CrossRef]
- R. Kraut, S. Kiesler, B. Boneva, J. Cummings, V. Helgeson, A. Crawford, Internet paradox revisited, J. Soc. Issues 58 (2002) 49–74. [CrossRef]
- C. Cheng, H.Y. Wang, L. Sigerson, C.L. Chau, Do the socially rich get richer? A nuanced perspective on social network site use and online social capital accrual, Psychol. Bull. 145 (2019) 734-764. [CrossRef]
- Moshkovitz, T. Hayat, The rich get richer: Extroverts' social capital on Twitter, Technol. Soc. 65 (2021) e101551. [CrossRef]
- K.A. Allen, T. Ryan, D.L. Gray, D.M. McInerney, L. Waters, Social media use and social connectedness in adolescents: The positives and the potential pitfalls, Aust. Educ. Dev. Psychol. 31 (2014) 18–31. [CrossRef]
- Y. Amichai-Hamburger, K.Y. McKenna, S.A. Tal, E-empowerment: Empowerment by the Internet, Comput. Hum. Behav. 24 (2008) 1776–1789. [CrossRef]
- E. Weinstein, The social media see-saw: Positive and negative influences on adolescents’ affective well-being, New Media Soc. 20 (2018) 3597–3623. [CrossRef]
- G.A. Giannopoulos, The application of information and communication technologies in transport, Eur. J. Oper. Res. 152 (2004) 302–320. [CrossRef]
- Mouratidis, S. Peters, B. van Wee, Transportation technologies, sharing economy, and teleactivities: Implications for built environment and travel, Transp. Res. Part D Transp. Environ. 92 (2021) e102716. [CrossRef]
- F. Schandl, P. Fischer, M.F.C. Hudecek, Predicting acceptance of autonomous shuttle buses by personality profiles: A latent profile analysis, Transp. (2023). [CrossRef]
- S. Mosaferchi, R. Califano, A. Naddeo, How personality, demographics, and technology affinity affect trust in autonomous vehicles: A case study, Hum. Factors Transp. 95 (2023) 227–236. [CrossRef]
- N. Charness, J.S. Yoon, D. Souders, C. Stothart, C. Yehnert, Predictors of attitudes toward autonomous vehicles: The roles of age, gender, prior knowledge, and personality, Front. Psychol. 9 (2018) 2589. [CrossRef]
- Y. Sela, Y. Amichai-Hamburger, “Baby, I can’t drive my car”: How controllability mediates the relationship between personality and the acceptance of autonomous vehicles, Int. J. Hum.–Comput. Interact. 40 (2023) 4698–4708. [CrossRef]
- Y. Amichai-Hamburger, Y. Mor, T. Wellingstein, T. Landesman, Y. Ophir, The personal autonomous car: Personality and the driverless car, Cyberpsychol. Behav. Soc. Netw. 23 (2020) 242–245. [CrossRef]
- J.P. Stein, T. Messingschlager, T. Gnambs, et al., Attitudes towards AI: Measurement and associations with personality, Sci. Rep. 14 (2024) 2909. [CrossRef]
- N.N. Sharan, D.M. Romano, The effects of personality and locus of control on trust in humans versus artificial intelligence, Heliyon 6 (2020) e04572. [CrossRef]
- P.A. Singleton, J. De Vos, E. Heinen, B. Pudāne, Potential health and well-being implications of autonomous vehicles, in: B. Pendyala, C.R. Bhat (Eds.), Advances in Transport Policy and Planning, vol. 5, Academic Press, 2020, pp. 163–190.
- H. Fitt, A. Curl, M.R. Dionisio, A. Ahuriri-Driscoll, E. Pawson, Considering the wellbeing implications for an ageing population of a transition to automated vehicles, Res. Transp. Bus. Manag. 30 (2019) e100382. [CrossRef]
- S.Y. He, J. Thøgersen, Y.H. Cheung, H.Y. Alesia, Ageing in a transit-oriented city: Satisfaction with transport, social inclusion and wellbeing, Transp. Policy 97 (2020) 85–94. [CrossRef]
- G. Nimrod, Technophobia among older Internet users, Educ. Gerontol. 44 (2018) 148–162. [CrossRef]
- M.A. Conceição, M.M. Monteiro, D. Kasraian, P. van den Berg, S. Haustein, I. Alves, B. Miranda, The effect of transport infrastructure, congestion and reliability on mental wellbeing: A systematic review of empirical studies, Transp. Rev. 43 (2023) 264–302. [CrossRef]
- A. Høye, A. Fyhri, T. Bjørnskau, Shared road is double happiness: Evaluation of a “Share the road” sign, Transp. Res. Part F Traffic Psychol. Behav. 42 (2016) 500–508. [CrossRef]
- P. Wang, On defining artificial intelligence, J. Artif. Gen. Intell. 10 (2019) 1–37. [CrossRef]
- A. Pannu, Artificial intelligence and its application in different areas, Int. J. Eng. Innov. Technol. 4 (2015) 79–84.
- R. Riedl, Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions, Electron. Mark. 32 (2022) 2021–2051. [CrossRef]
- J. Park, S.E. Woo, Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence, J. Psychol. 156 (2022) 68–94. [CrossRef]
- A. Babiker, S.A. Alshakhsi, T. Supti, R. Ali, Do personality traits impact the attitudes towards artificial intelligence?, in: Proceedings of the 11th International Conference on Behavioural and Social Computing, Harbin, China, 2024.
- E. Geisler, O. Heller, Management of Medical Technology: Theory, Practice and Cases, vol. 2, Springer Science & Business Media, 2012.
- F.J. Baker, R.E. Silverton, Introduction to Medical Laboratory Technology, Butterworth-Heinemann, 2014.
- Rahman, Does personality matter when we are sick? An empirical study of the role of personality traits and health emotion in healthcare technology adoption decision, in: Proceedings of the 50th Hawaii International Conference on System Sciences, HICSS'17, Hawaii, USA, 2017.
- F. Lattanzio, A.M. Abbatecola, R. Bevilacqua, C. Chiatti, A. Corsonello, L. Rossi, S. Bustacchini, R. Bernabei, Advanced technology care innovation for older people in Italy: Necessity and opportunity to promote health and wellbeing, J. Am. Med. Dir. Assoc. 15 (2014) 457–466. [CrossRef]
- P. Rajpurkar, E. Chen, O. Banerjee, E.J. Topol, AI in health and medicine, Nat. Med. 28 (2022) 31–38. [CrossRef]
- J. Fan, T. Sun, J. Liu, T. Zhao, B. Zhang, Z. Chen, M. Glorioso, E. Hack, How well can an AI chatbot infer personality? Examining psychometric properties of machine-inferred personality scores, J. Appl. Psychol. 108 (2023) 1277–1299. [CrossRef]
- S. Singh, W. Singh, AI-based personality prediction for human well-being from text data: A systematic review, Multimed. Tools Appl. 83 (2024) 46325–46368. [CrossRef]
- S. D’Alfonso, AI in mental health, Curr. Opin. Psychol. 36 (2020) 112–117. [CrossRef]
- Oracle, The AI@Work Study: 2020 Global Results, Oracle, 2020. https://go.oracle.com/LP=86149?elqCampaignId=230263, (accessed 14 March 2025).
- G.M.M. Salem, H.E. El-Gazar, A.Y. Mahdy, T.A.F. Alharbi, M.A. Zoromba, Nursing students’ personality traits and their attitude toward artificial intelligence: A multicenter cross-sectional study, J. Nurs. Manag. 2024 (2024) e6992824. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).