Submitted:
30 May 2025
Posted:
30 May 2025
You are already at the latest version
Abstract
Keywords:
Nomenclature
| bi | Coordinate body forces per unit mass (Ni kg-1) |
| ε | Turbulent kinetic dissipation rate |
| ii | Cartesian unit vector in the direction of X |
| k | Turbulence kinetic energy |
| P | Pressure (N m-2) (Pa) |
| p | Mean pressure (N m-2) |
| S | Modulus of the mean strain rate tensor |
| T | Turbulent time scale (s) |
| t | Time scale (s) |
| τi | Newtonian stress tensor cartesian component |
| ui | Cartesian components of the averaged velocity (m s-1) |
| v | Fluid velocity (m s-1) |
| Mean velocity (m s-1) | |
| υ | Kinematic viscosity (N s m-2) |
| μ | Dynamic viscosity (Pa s) |
| μt | Turbulent eddy Viscosity |
| ρ | Fluid density (kg m-3) |
| ω | Turbulence specific rate of dissipation |
1. Introduction and Literature



2. Methodology
2.1. Numerical Setup
2.1.1. Governing Equations
2.2. Simulation Setup
2.2.1. Model Geometry and Parameters
2.2.2. Grid Generation and Boundary Conditions

3. Grid Convergence

4. Results and Discussion
4.1. Penetration



4.2. Breaching



5. Conclusions
Acknowledgments
Conflicts of Interest
References
- S. B. Primrose, Biomimetics: Nature-Inspired Design and Innovation. Newark: Wiley, 2020.
- Yang, X.; Wang, T.; Liang, J.; Yao, G.; Liu, M. Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV). Prog. Aerosp. Sci. 2015, 74, 131–151. [Google Scholar] [CrossRef]
- Yao, G.; Li, Y.; Zhang, H.; Jiang, Y.; Wang, T.; Sun, F.; Yang, X. Review of hybrid aquatic-aerial vehicle (HAAV): Classifications, current status, applications, challenges and technology perspectives. Prog. Aerosp. Sci. 2023, 139. [Google Scholar] [CrossRef]
- Joiner, K.F.; Swidan, A.A. Conceptualising a Hybrid Flying and Diving Craft. J. Mar. Sci. Eng. 2023, 11, 1541. [Google Scholar] [CrossRef]
- B. Boom, T. Truscott, F. Fish, A. Summers, and E. Habtour, "Water Entry Dynamics of Avian Inspired Divers," in ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2023. [Online]. Available: https://doi.org/10.1115/SMASIS2023-109800. [Online]. Available: https://doi.org/10.1115/SMASIS2023-109800.
- Ropert-Coudert, Y.; Grémillet, D.; Ryan, P.; Kato, A.; Naito, Y.; Le Maho, Y. Between air and water: the plunge dive of the Cape Gannet Morus capensis. Ibis 2003, 146, 281–290. [Google Scholar] [CrossRef]
- X. Yang et al., "Computational simulation of a submersible unmanned aerial vehicle impacting with water," in IEEE International Conference on Robotics and Biomimetics (ROBIO), December 2013: IEEE, pp. 1138-1143. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6739617. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6739617.
- Machovsky-Capuska, G.E.; Howland, H.C.; Raubenheimer, D.; Vaughn-Hirshorn, R.; Würsig, B.; Hauber, M.E.; Katzir, G. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet. Proc. R. Soc. B: Biol. Sci. 2012, 279, 4118–4125. [Google Scholar] [CrossRef]
- Liang, J.; Yao, G.; Wang, T.; Yang, X.; Zhao, W.; Song, G.; Zhang, Y. Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft. Sci. China Technol. Sci. 2014, 57, 390–402. [Google Scholar] [CrossRef]
- G. L. Kooyman, C. M. Drabek, R. Elsner, and W. B. Campbell, "Diving behavior of the emperor penguin, Aptenodytes forsteri," The Auk, vol. 88, no. 4, pp. 775-795, October 1971. [Online]. Available: https://www.jstor.org/stable/4083837.
- Sato, K.; Ponganis, P.J.; Habara, Y.; Naito, Y. Emperor penguins adjust swim speed according to the above-water height of ice holes through which they exit. J. Exp. Biol. 2005, 208, 2549–2554. [Google Scholar] [CrossRef]
- R. Waseem and T. Malik, "U.S.-China Strategic Competition: Conventional Deterrence and the Changing Face of Modern Warfare," Journal of Humanities and Social Sciences (Peshawar, Pakistan), vol. 32, no. 2, 2024.
- Bogue, R. Political tensions and technological innovation driving the military robot business. Ind. Robot. Int. J. Robot. Res. Appl. 2023, 51, 189–195. [Google Scholar] [CrossRef]
- Chávez, K.; Swed, O. The Empirical Determinants of Violent Nonstate Actor Drone Adoption. Armed Forces Soc. 2023, 50, 883–912. [Google Scholar] [CrossRef]
- D. Lu, C. Xiong, Z. Zeng, and L. Lian, "A multimodal aerial underwater vehicle with extended endurance and capabilities," in International Conference on Robotics and Automation (ICRA), May 2019: IEEE, pp. 4674-4680. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8793985. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8793985.
- Lu, D.; Xiong, C.; Zhou, H.; Lyu, C.; Hu, R.; Yu, C.; Zeng, Z.; Lian, L. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle. Ocean Eng. 2021, 219. [Google Scholar] [CrossRef]
- Lyu, C.; Lu, D.; Xiong, C.; Hu, R.; Jin, Y.; Wang, J.; Zeng, Z.; Lian, L. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments. J. Field Robot. 2022, 39, 543–556. [Google Scholar] [CrossRef]
- Jin, Y.; Bi, Y.; Lyu, C.; Bai, Y.; Zeng, Z.; Lian, L. Nezha-IV: A hybrid aerial underwater vehicle in real ocean environments. J. Field Robot. 2023, 41, 420–442. [Google Scholar] [CrossRef]
- Jin, Y.; Zeng, Z.; Lian, L. Nezha-SeaDart: A tail-sitting fixed-wing vertical takeoff and landing hybrid aerial underwater vehicle. J. Field Robot. 2024, 42, 137–152. [Google Scholar] [CrossRef]
- Narayanan, P. Rajeshirke, A. Sharma, and K. Pestonjamasp, "Survey of the emerging bio-inspired Unmanned Aerial Underwater Vehicles," in 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling (ICEMEM -2019), Mumbai, India, 23-24 December 2019 2020, vol. 810, no. 012078: IOP Science, in IOP Conference Series, doi: 10.1088/1757-899X/810/1/012078. [Online]. Available: https://iopscience.iop.org/article/10.1088/1757-899X/810/1/012078.
- Bi, Y.; Lu, D.; Zeng, Z.; Lian, L. Dynamics and control of hybrid aerial underwater vehicle subject to disturbances. Ocean Eng. 2022, 250. [Google Scholar] [CrossRef]
- N. J. Carroll et al., "Low-Observable Submersible Sea-plane for Electronics Intelligence (LOSSEI): A conceptual design and analysis," in 6th SIA Submarine.
- Science, Technology and Engineering Conference (SubSTEC6), Adelaide, Australia, 8–10 November 2021: Submarine Institute of Australia.
- K. F. Joiner, A. Swidan, E. Jewson, N. Carroll, D. Champ, and G. Shpak, "Submersible Seaplanes as the Path to Hybrid Flying and Diving Craft," in ISUDEF 2021—International Symposium on Unmanned Systems and the Defense Industry, Howard University,Washington, DC, USA, 26–28 October 2021.
- K. F. Joiner, G. Warren, A. Truslove, Q. Graco, M. Erickson, and N. Lawson. (2023) Students design UAV to target undersea threats. Available: https://navalinstitute.com.au/students-design-uav-to-target-undersea-threats/ .
- G. Braggett, K. F. Joiner, A. Somerville, and D. Hill, "Feasibility of Electric Ducted Fans to replace open propellers on an electrified training aircraft," Aerospace Science and Technology, vol. TBD, 2025: submitted, preprint SSRN. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5064869.
- F. Fresconi and M. Fermen-Coker, "Delivery of Modular Lethality via a Parent-Child Concept," in AIAA Atmospheric Flight Mechanics Conference, June 2015: AIAA. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2015-2708. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2015-2708.
- J. Trevithick. "This Is Our First Look At How General Atomics’ Sparrowhawk Drone Will Get Caught In Mid-Air." https://www.thedrive.com/the-war-zone/41716/this-is-our-first-look-at-how-general-atomics-sparrowhawk-drone-will-get-caught-in-mid-air (accessed 21 August, 2023).
- Qi, D.; Feng, J.; Xu, B.; Zhang, J.; Li, Y. Investigation of water entry impact forces on airborne-launched AUVs. Eng. Appl. Comput. Fluid Mech. 2016, 10, 473–484. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, J.; Feng, J.; Liu, A.; Chen, G. A longitudinal air–water trans-media dynamic model for slender vehicles under low-speed condition. Nonlinear Dyn. 2019, 99, 1195–1210. [Google Scholar] [CrossRef]
- Wei, J.; Sha, Y.-B.; Hu, X.-Y.; Yao, J.-Y.; Chen, Y.-L. Aerodynamic Numerical Simulation Analysis of Water–Air Two-Phase Flow in Trans-Medium Aircraft. Drones 2022, 6, 236. [Google Scholar] [CrossRef]
- Sun, X.; Cao, J.; Li, Y.; Ling, Y. Efficient prediction method for the water-exit characteristics of unmanned aerial–underwater vehicles. Ocean Eng. 2024, 302. [Google Scholar] [CrossRef]
- TBD, "Water-exit dynamics and system identification for a hybrid aerial underwater vehicle," Engineering Applications of Computational Fluid Mechanics, vol. TBD, no. TBD, 2025: accepted.
- Wu, X.; Chang, X.; Liu, S.; Yu, P.; Zhou, L.; Tian, W. Numerical Study on the Water Entry Impact Forces of an Air-Launched Underwater Glider under Wave Conditions. Shock. Vib. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Z.; Zhou, H.; Yao, B.; Lian, L. Numerical Study on the Water Entry of a Freely Falling Unmanned Aerial-Underwater Vehicle. J. Mar. Sci. Eng. 2023, 11, 552. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Li, E.; Le, G. Numerical Analysis on Water-Exit Process of Submersible Aerial Vehicle under Different Launch Conditions. J. Mar. Sci. Eng. 2023, 11, 839. [Google Scholar] [CrossRef]
- Yun, H.; Jin, Y.; Xie, H.; Zeng, Z.; Lian, L. Research on the Dynamic Characteristics of the Hybrid Aerial Underwater Vehicle: Low-velocity Water Exit. J. Mar. Sci. Appl. 2025, 24, 323–330. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, J.; Chen, G.; Liu, A.; Feng, J. Optimization of water-entry and water-exit maneuver trajectory for morphing unmanned aerial-underwater vehicle. Ocean Eng. 2022, 261. [Google Scholar] [CrossRef]
- Liang, X.-F.; Yang, J.-M.; Li, J.; Xiao, L.-F.; Li, X. Numerical Simulation of Irregular Wave-Simulating Irregular Wave Train. J. Hydrodyn. 2010, 22, 537–545. [Google Scholar] [CrossRef]
- J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dynamics, 4 ed. Springer International Publishing, 2020.
- J. Tu, G. H. Yeoh, and C. Liu, Computational Fluid Dynamics - A Practical Approach, 3 ed. Elsevier, 2018.
- D. C. Wilcox, Turbulence modeling for CFD, 3 ed. DCW Industries, 2006.
- H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics : the finite volume method, 2 ed. Pearson Education Ltd, 2007.
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Software, STAR-CCM+ User Guide, 2021.1: Siemens PLM Software, 2020.
- Sun, X.; Cao, J.; Li, Y.; Ling, Y. Efficient prediction method for the water-exit characteristics of unmanned aerial–underwater vehicles. Ocean Eng. 2024, 302. [Google Scholar] [CrossRef]
- Chen, G.; Yan, L.; Cao, A.; Zhu, X.; Ding, H.; Lin, Y. Novel Design and Computational Fluid Dynamic Analysis of a Foldable Hybrid Aerial Underwater Vehicle. Drones 2024, 8, 669. [Google Scholar] [CrossRef]
- B. E. Rapp, "Chapter 9 - Fluids," in Microfluidics: Modelling, Mechanics and Mathematics, B. E. Rapp Ed. Oxford: Elsevier, 2017, pp. 243-263.
- H. P. Dulabhai, A. Raj, P. R. Deshpande, R. Thejaraju, S. Shivakumar, and N. Santhosh, "A review of buoyancy driven underwater gliders," American Institute of Physics, 2022. [Online]. Available: https://pubs.aip.org/aip/acp/article-abstract/2421/1/050001/2822243/A-review-of-buoyancy-driven-underwater-gliders.
- Bhalla, A.P.S.; Nangia, N.; Dafnakis, P.; Bracco, G.; Mattiazzo, G. Simulating water-entry/exit problems using Eulerian–Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library. Appl. Ocean Res. 2020, 94. [Google Scholar] [CrossRef]
- Korobkin and V. V. Pukhnachov, "Initial Stage of Water Impact," Annual Review of Fluid Mechanics, 1988. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1988AnRFM..20..159K/abstract.
- Truscott, T.T.; Epps, B.P.; Belden, J. Water Entry of Projectiles. Annu. Rev. Fluid Mech. 2014, 46, 355–378. [Google Scholar] [CrossRef]
- Cai, X.; Wu, W.; Han, W.; Li, W.; Zhang, J.; Jiao, Y. Study on Water Entry of a 3D Torpedo Based on the Improved Smoothed Particle Hydrodynamics Method. Appl. Sci. 2024, 14, 4441. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, Z.; Li, J.; Chen, X.; Lu, C. Numerical Investigation on the Regime of Cavitation Shedding and Collapse During the Water-Exit of Submerged Projectile. J. Fluids Eng. 2019, 142. [Google Scholar] [CrossRef]
- Moshari, S.; Nikseresht, A.H.; Mehryar, R. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder. Int. J. Nav. Arch. Ocean Eng. 2014, 6, 219–235. [Google Scholar] [CrossRef]
| Parameter | Symbol | Unit | Value |
| Fuselage Diameter | D | m | 0.400 |
| Vehicle Length Cruise | L | m | 3.352 |
| Vehicle Length Swept | LS | m | 3.700 |
| Wing Chord | C | m | 0.646 |
| Wing Span Cruise | b | m | 3.997 |
| Wing Span Swept | bS | m | 1.548 |
| Horizontal Tail Chord | Ct | m | 0.590 |
| Horizontal Tail Span | bt | m | 2.107 |
| Vertical Tail Span | bv | m | 0.369 |
| Mass Flight | m1 | kg | 218.6 |
| Mass Neutral Buoyancy (ρ=1025kg/m3) | m2 | kg | 526.0 |
| Wing Area | Sw | m2 | 4.136 |
| Cross Sectional Area (swept) | Sz | m2 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
