Submitted:
29 May 2025
Posted:
30 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Floristic Composition of Plant Communities
2.2. Characteristics of Plant Communities, Abiotic Factors of Habitats and the Inflence of Anthropogenic Factors
2.3. Climate
2.4. Flow Cytometry and Morphological-Anatomical Research
2.4.1. Fruit Morphology
2.4.2. Anatomical Analysis
2.4.3. Flow Cytometry
2.4.5. Molecular genetics
3. Discussion
3.1. Ecological Conditions
3.2. Floristic Diversity
3.3. Flow Cytometry and Morphological-Anatomical Research
3.3.1. Fruit Morphology
3.3.2. Anatomy
- Non-Kranz types include axilloidoid, corispermoid, austrobasidioid (similar to corispermoid but containing water-storage tissue), neokochioid (with peripheral vascular bundles), and sympegmoid (similar to neokochioid but with peripheral channels separated from chlorenchyma).
- Kranz types, such as atriplicoid, kochioid, salsoloid, and others, differ in the arrangement of Kranz cells relative to the vascular bundles [34].
- Water-conserving strategy
- 2.
- Habitat association
- 3.
- Photosynthetic activity
3.3.3. Flow Cytometry
- Salsola tragus: – 2C = 4.48–4.57 pg (2n = 36);
- Krascheninnikovia ceratoides (L.) Gueldenst.: – 2C = 2.26–2.71 pg (2n = 18) [44];
- Kalidium foliatum (Pall.) Moq.: – 2C = 2.259 ± 0.023 pg (2n = 18);
- K. caspicum (L.) Ung.-Sternb.: – 2C = 2.981 ± 0.149 pg (2n = 18) and 2C = 5.993 ± 0.139 pg (2n = 36) [52];
- Bassia prostrata s.l.: – 2C = 2.66 ± 0.12 pg (2n = 18) and 2C = 5.01 ± 0.04 pg (2n = 36) [46];
- Krascheninnikovia ceratoides s.l.: – 2C = 2.94 ± 0.15 pg (2n = 18) and 2C = 5.83 ± 0.07 pg (2n = 36) [45].
3.3.4. Phylogeny
3.4. Threats to Existence and Ways to Conservation
- Habitat fragmentation and degradation: The expansion of infrastructure (roads, pipelines, and industrial facilities) leads to habitat destruction and fragmentation of populations especially in the northwestern part of the study region. The construction of new unpaved roads intensifies erosion processes, worsening the conditions for natural population recovery.
- Livestock grazing: This is also commonly occurs in the northwestern part. High grazing pressure causes mechanical damage to plants, reducing their reproductive capacity and altering the species composition of plant communities, thereby limiting the potential for natural regeneration.
- Climate change: Increasing aridization, reduced precipitation, and rising average annual temperatures may negatively impact population stability, especially at early ontogenetic stages [12].
- Industrial development: In the northwestern part, oil and gas extraction and mining activities alter hydrological regimes, contaminate soils, and increase dust loads, negatively affecting the physiological condition of plants.
- Expansion of protected areas: Inclusion of new Xy. chiwensis habitats into the existing Ustyurt Nature Reserve and Kendirli–Kayasan State Nature Reserve zones and establishment of new cluster sites based on research data. For example, the proposal in [22] to designate a site near the tri-border area (Chink Kaplankyr) is considered unjustified because the chink territory is behind a border fence and not exposed to anthropogenic threats.
- Limiting anthropogenic pressures: Regulation of livestock grazing in Xy. chiwensis habitats, especially in heavily degraded sites, exerting better control over transport route construction, and develop alternative routes to minimize the impacts on natural ecosystems.
- Scientific research: Regular monitoring of populations with a focus on the ontogenetic structure and reproductive status.
- Rehabilitation activities: Cultivation of Xy. chiwensis in the Mangyshlak Experimental Botanical Garden with subsequent reintroduction into natural habitats.
- Awareness and outreach: Informing local communities about the importance of conserving Xy. chiwensis and natural ecosystems as a whole.
4. Materials and Methods
4.1. Data Collection
4.2. Anatomic Method
4.3. Flow Cytometry
4.4. Molecular Genetics Methods
5. Conclusions
- There is moderate floristic similarity between the populations on the Mangyshlak Peninsula and the Ustyurt Plateau (Sørensen index = 0.385), reflecting the influence of regional environmental factors. These results are consistent with previously reported floristic differences in the area.
- There are pronounced morphological distinctions between Xy. chiwensis and the closely related species Xy. arbuscula, particularly in fruit size and cone length, which serve as important taxonomic characteristics.
- Xy. chiwensis shows anatomical adaptations to arid conditions, including a well-developed hypodermis, thin epidermis, and characteristic mesophyll structure, which align with general patterns of xerophytic adaptation among desert plants.
- The genome size of Xy. chiwensis (2C = 2.483 pg) is reported here for the first time and the species’ ploidy level was confirmed, which aligns with the polyploid tendencies observed within the genus Xylosalsola and the family Amaranthaceae.
- The phylogenetic placement of Xy. chiwensis was confirmed to be within the tribe Salsoleae, distinguishing it as a separate lineage within Xylosalsola based on its nrITS and rps16 intron sequences.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sukhorukov, A.P. Carpology of the Chenopodiaceae Family in Connection with the Problems of Phylogeny, Systematics and Diagnostics of Its Representatives, Abstract of a PhD Thesis for a Doctor of Biological Sciences, Moscow, 2015.
- Bochantsev, V.P. The Genus Salsola L., a Brief History of Its Development and Dispersal. Bot. J. 1969, 54, 989–1001. [Google Scholar]
- Bochantsev, V.P. Review of Species of the Section Coccosalsola Fenzl of the Genus Salsola L. Nov. Syst. Vyssh. Rast. 1976, 13, 74–102. [Google Scholar]
- Bochantsev, V.P. Review of the Genus Halothamnus Jaub. et Spach (Chenopodiaceae). Nov. Syst. Vyssh. Rast. 1981, 18, 146–176. [Google Scholar]
- Freitag, H.; S. Rilke. Salsola [s. l.]. In Flora Iranica; Editor K.H. Rechinger, Graz: Akademische Druck- und Verlagsanstalt, 1997; Volume 17, pp. 2154–255.
- Kamelin, R.V. Ancient Xerophilous Family Chenopodiaceae in the Flora of Turan and Central Asia. Bot. J. 2011, 96, 441–464. [Google Scholar]
- Akhani, H.; Edwards, G.; Roalson, E.H. Diversification of the Old World Salsoleae s.l. (Chenopodiaceae): Molecular Phylogenetic Analysis of Nuclear and Chloroplast Data Sets and a Revised Classification. Int. J. Plant Sci. 2007, 168, 931–956. [Google Scholar] [CrossRef]
- Almerekova, S.; Yermagambetova, M.; Osmonali, B.; Vesselova, P.; Turuspekov, Y.; Abugalieva, S. Complete Plastid Genome Sequences of Four Salsoleae s.l. Species: Comparative and Phylogenetic Analyses. Biomolecules 2024, 14, 890. [Google Scholar] [CrossRef]
- Tzvelev, N.N. Notes on Chenopodiaceae of Eastern Europe. Ukrains’kij Botaničnij Žurnal 1993, 50, 78–85. [Google Scholar]
- POWO. 2025. Plants of the World Online. Royal Botanic Gardens, Kew. Accessed February 27, 2025. http://www.plantsoftheworldonline.org/.
- Khasanov, F.O. (Ed.). Red Book of the Republic of Uzbekistan. Volume 1: Plants; Chinor ENK: Tashkent, Uzbekistan, 2019.
- Rakhimova, N.K.; Rakhimova, T.; Shomurodov, Kh.F.; Sharipova, V.K. The Status of Coenopopulations of Xylosalsola chiwensis (Popov) Akhani & Roalson and Scorzonera bungei Krasch. & Lipsch. on the Ustyurt Plateau (Uzbekistan). Arid Ecosyst. 2023, 13, 189–195. [Google Scholar] [CrossRef]
- Pavlov, N.V. (Ed.) Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR: Alma-Ata, 1960; Volume 3.
- Rakhimova, N.K. The Current State of the Anabasis salsa Pasture Varieties in the Karakalpak Ustyurt (Uzbekistan). Probl. Bot. South Sib. Mong. 2022, 21, 144–147. [Google Scholar] [CrossRef]
- Baitulin, I.O. (Ed.). Red Data Book of Kazakhstan: Plants, 2nd ed.; ArtPrintXXI LLP: Astana, Kazakhstan, 2014.
- iNaturalist. 2024. Xylosalsola chiwensis. Accessed February 28, 2024. https://www.inaturalist.org/taxa/1021062.
- GBIF. 2024. Xylosalsola chiwensis. Accessed February 28, 2024. https://www.gbif.org/search?q=Xylosalsola%20chiwensis.
- Arifkhanova, M.M. Vegetation of the Fergana Valley. Fan Publishing House: Tashkent, 1967.
- Plantarium. 2024. Xylosalsola chiwensis Image. Accessed February 28, 2024. https://www.plantarium.ru/page/image/id/830093.html.
- Urkimbaev, Sh.U.; Nurmukhambetov, D.E. Flora of the Ustyurt Reserve. Zhanaozen, Kazakhstan, 2011.
- Smelyansky, I.E.; Pestov, M.V.; Terentyev, V.A.; Laktionov, A.P.; Nurmukhambetov, Zh.E.; Dieterich, Til; Sultanova, B.M; Mukhashov, A.T.; Barashkova, A.N. Justification and Prospects for the Creation of the 'Southern Ustyurt' Cluster Site of the Ustyurt State Nature Reserve (Kazakhstan). In Current State and Problems of Biodiversity Conservation of the Ustyurt Plateau; Astrakhan State University: Astrakhan, Russia, 2024; pp. 9–82.
- Aralbay, N.K. (Ed.). Catalogue of Rare and Endangered Plant Species of the Mangistau Region (Red Book). Aktau, Kazakhstan, 2006; 22 pp.
- Rachkovskaya, E.I.; Volkova, E.A.; Khramtsov, V.N., eds. Botanical Geography of Kazakhstan and Middle Asia (Desert Region). Boston-Spectrum: St. Petersburg, Russia, 2003.
- Aralbaev, N.K. Scheme of New Floristic Zoning of the Territory of Kazakhstan (Materials for the 2nd Edition of the Flora of Kazakhstan). Poisk, Ser. Tech. Nat. Sci. 2002, 4 (2), 66–72.
- Faizov, K.Sh. Soils of the Kazakh SSR. Soils of the Guryev Region. Volume 13. Academy of Sciences of the Kazakh SSR: Alma-Ata, 1970.
- Goloskokov, V.P.; Polyakov, P.P. Chenopodiaceae. In Flora of Kazakhstan, Volume 3; Publishing House of the Academy of Sciences of the Kazakh SSR: Alma-Ata, 1960; pp. 198–359.
- Pratov, U. Chenopodiaceae." In Plant Identifier of Plants of Central Asia, Volume 3; Fan Publishing House: Tashkent, 1972; pp. 20–98.
- IUCN. 2024. The IUCN Red List of Threatened Species: Xylosalsola chiwensis. Accessed February 28, 2024. https://www.iucnredlist.org/search?query=Xylosalsola%20chiwensis&searchType=species.
- Serebryakov, I.G. Life forms of higher plants and their significance. In Field Geobotany; Lavrenko, E.M., Korchagin, A.A., Eds.; Vol. 3; Academy of Sciences of the USSR: Moscow–Leningrad, 1964.
- Raunkiaer, C. Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beihefte zum Botanischen Zentralblatt 1910, 27, 171–206. [Google Scholar]
- Korovin, E.P. Vegetation of Central Asia and Southern Kazakhstan. Publishing House of the Academy of Sciences of the UzSSR: Tashkent, 1961.
- State Climate Cadastre. Available online: http://ecodata.kz:3838/app_persona/ (accessed on 26 February 2025).
- Butnik, A.A.; Ashurmetov, O.A.; Nigmanova, R.N.; Payzieva, S.A. Ecological Anatomy of Desert Plants in Central Asia (Half–Shrubs, Shrubs); Fan Publishing House: Tashkent, Uzbekistan, 2001; p. 132. [Google Scholar]
- Butnik, A.A.; Duschanova, G.M.; Yusupova, D.M.; Abdullaeva, A.T.; Abdinazarov, S.H. Types leaf mesophyll species of Chenopodiaceae Vent. Central Asia and their role in the monitoring of desertification. J. Nov. Appl. Sci. 2017, 6, 13–21. [Google Scholar]
- Vesselova, P.V.; Alikhanova, A.A. Anatomical structure of assimilative organs in dominant species of the family Chenopodiaceae (Amaranthaceae s.l.). Experimental Biology 2024, 100, 19–32. [Google Scholar] [CrossRef]
- Lavrenko, E.M. Main Features of Botanical Geography of the Deserts of Eurasia and North Africa. Komarov Readings, USSR Academy of Sciences: Leningrad–Moscow, 1962.
- Kadereit, G.; Borsch, T.; Weising, K.; Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 2003, 164, 959–986. [Google Scholar] [CrossRef]
- Kadereit, G.; Freitag, H. Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): Implications for biogeography, evolution of C4-photosynthesis and taxonomy. Taxon 2011, 60, 51–78. [Google Scholar] [CrossRef]
- Sage, R.F.; Sage, T.L.; Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 2012, 63, 19–47. [Google Scholar] [CrossRef]
- Edwards, E.J.; Smith, S.A. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. USA 2010, 107, 2532–2537. [Google Scholar] [CrossRef]
- Edwards, G.E.; Voznesenskaya, E.V. C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants; C4 Photosynthesis and Related CO₂ Concentrating, Mechanisms, Raghavendra, A.S., Sage, R.F., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 29–61. [Google Scholar] [CrossRef]
- Peter, G.; Katinas, L. A new type of Kranz anatomy in Asteraceae. Aust. J. Bot. 2003, 51, 217–226. [Google Scholar] [CrossRef]
- Osmonali, B.B.; Akhtaeva, N.Z.; Veselova, P.V.; Kudabaeva, G.M.; Kurbatova, N.V. Anatomical structure features of various species of the genus Salsola L. Probl. Bot. South Sib. Mong. 2020, 19, 146–154. [Google Scholar] [CrossRef]
- An’kova, T.V.; Lomonosova, M.N.; Voronkova, M.S.; Petruk, A.A.; Osmonali, B.; Vesselova, P.V. IAPT chromosome data 32. Taxon 2020, 69, 1126–1132. [Google Scholar] [CrossRef]
- Lomonosova, M.N.; Pankova, T.V.; Korolyuk, E.A.; Shaulo, D.N.; Osmonali, B.; Nikolin, E.G. Nuclear genome size analysis in Krascheninnikovia ceratoides s.l. (Amaranthaceae). Bot. Pac. 2024, 13, 183–187. [Google Scholar] [CrossRef]
- Pankova, T.V.; Lomonosova, M.N.; Vaulin, O.V.; Korolyuk, A.Yu.; Korolyuk, E.A.; Shaulo, D.N.; Osmonali, B. Cytogeography of the polyploid complex Bassia prostrata s.l. (Chenopodiaceae) based on genome size analysis and PCR-RFLP cpDNA. Russ. J. Genet. 2024, 60, 274–287. [Google Scholar] [CrossRef]
- Semiotroczeva, N.L. Examinatio caryosystematica specierum monnularum generum Salsola L. et Climacoptera Botsch. Not. Syst. Herb. Inst. Bot. Acad. Sci. Kazakhst. 1983, 13, 66–70. [Google Scholar]
- Lomonosova, M.N.; Krasnikov, A.A.; Krasnikova, S.A. Chromosome numbers of Chenopodiaceae family members of the Kazakhstan flora. Bot. J. 2003, 88, 134–135. [Google Scholar]
- Bochantseva, Z. P. O chislakh chromosom. In Introd. Akklim. Rasteny Akad. Nauk Uzbekist. SSR, Tashkent, 1972; pp. 45–53.
- Morgan, H.D.; Westoby, M. The relationship between nuclear DNA content and leaf strategy in seed plants. Ann. Bot. 2005, 96, 1321–1330. [Google Scholar] [CrossRef]
- Koce, J.D.; Škondrić, S.; Bačič, T.; Dermastia, M. Amounts of nuclear DNA in marine halophytes. Aquat. Bot. 2008, 89, 385–389. [Google Scholar] [CrossRef]
- Osmonali, B.B.; Vesselova, P.V.; Kudabayeva, G.M.; Skaptsov, M.V.; Shmakov, A.I.; Friesen, N. Phylogeny and flow cytometry of the genus Kalidium Moq. (Amaranthaceae s.l.) in Kazakhstan. Plants 2023, 12, 2619. [Google Scholar] [CrossRef]
- Almerekova, S.; Favarisova, N.; Turuspekov, Y.; Abugalieva, S. Cross-genera transferability of microsatellite markers and phylogenetic assessment of three Salsola species from Western Kazakhstan. Proc. Latv. Acad. Sci., Sect. B, Nat. Exact Appl. Sci. 2020, 74, 325–334. [Google Scholar] [CrossRef]
- Pyankov, V.I.; Artyusheva, E.G.; Edwards, G.E.; Black, C.C.; Soltis, P.S. Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. Am. J. Bot. 2001, 88, 1189–1198. [Google Scholar] [CrossRef]
- Annabayramov, B. The Red Book of Turkmenistan. Volume 1: Plants and Fungi; 3rd ed., revised and enlarged; Ylym: Ashgabat, Turkmenistan, 2011.
- Red Book of Turkmenistan. Vol. 1. Plants; Ashgabat, Turkmenistan, 2024; p. 294.
- Bykov, B. A. Geobotany (3rd ed.). Nauka: Alma-Ata, 1978.
- Drude, O. Die Ökologie der Pflanzen. Vieweg: Braunschweig, 1913.
- Pavlov, N. V. (Ed.). Flora of Kazakhstan; Vols. 1–9; Publishing House of the Academy of Sciences of the Kazakh SSR / Nauka: Alma-Ata, 1956–1966.
- Goloskokov, V. P. (Ed.). Illustrated Guide for Identification of the Plants of Kazakhstan; Vols. 1–2; Nauka: Alma-Ata, 1969–1972.
- Sörensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 1948, 5, 1–34. [Google Scholar]
- Pyankov, V.I.; Voznesenskaya, E.V.; Kondratschuk, A.V.; Black, C.C. A comparative anatomical and biochemical analysis in Salsola (Chenopodiaceae) species with and without a Kranz type leaf anatomy: a possible reversion of C4 to C3 photosynthesis. Am. J. Bot. 1997, 84, 597–606. [Google Scholar] [CrossRef]
- Voznesenskaya, E.V.; Koteyeva, N.; Akhani, H.; Roalson, E.; Edwards, G.E. Structural and phylogenical analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate and C4 photosynthesis. J. Exp. Biol. 2013, 64, 3583–3604. [Google Scholar] [CrossRef]
- Vesselova, P.; Alikhanova, A. Anatomical structure of assimilative organs in dominant species of the family Chenopodiaceae (Amaranthaceae s.l.). Experimental Biology 2024, 100, 19–32. [Google Scholar] [CrossRef]
- Schüssler, C.; Freitag, H.; Koteyeva, N.; Schmidt, D.; Edwards, G.; Voznesenskaya, E. V.; Gudrun Kadereit. Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae). J. Exp. Biol. 2016, 68, 207–223. [CrossRef]
- Osmonali, B.B.; Ahtaeva, N.Z.; Vesselova, P.V.; Kudabayeva, G.M.; Kurbatova, N.V. Features of the anatomical structure of various species of the genus Salsola L. Probl. Bot. South Sib. Mong. 2020, 19, 146–154. [Google Scholar] [CrossRef]
- Doležel, J.; Sgorbati, S.; Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 1992, 85, 625–631. [Google Scholar] [CrossRef]
- Skaptsov, M.V.; Kutsev, M.G.; Smirnov, S.V.; Vaganov, A.V.; Uvarova, O.V.; Shmakov, A.I. Standards in plant flow cytometry: an overview, polymorphism and linearity issues. Turczaninowia 2024, 27, 86–104. [Google Scholar]
- Doležel, J.; Greilhuber, J.; Lucretti, S.; Meister, A.; Lysák, M.; Nardi, L.; Obermayer, R. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 1998, 82, 17–26. [Google Scholar] [CrossRef]
- Kutsev, M. G. Fragmentnyy analiz DNK rasteniy: RAPD, DAF, ISSR. ARTIKA: Barnaul, Russia, 2009.
- Kutsev, M. G.; Uvarova, O. V.; Sinitsyna, T. A. Set of synthetic oligonucleotides for the amplification and sequencing of ITS1-5.8S-ITS2 vascular plants. RU Patent 2528063, 2014.
- Oxelman, B.; Lidén, M.; Berglund, D. Chloroplast rps16 intron phylogeny of the tribe Silleneae (Caryophyllaceae). Plant Syst. Evol. 1997, 206, 393–410. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland, MA, USA, 2002.
- Kluge, A.G.; Farris, J.S. Quantitative phyletics and the evolution of anurans. Syst. Zool. 1969, 18, 1–32. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Almerekova, S.; Yermagambetova, M.; Osmonali, B.; Vesselova, P.; Abugalieva, S.; Turuspekov, Y. Characterization of the plastid genomes of four Caroxylon Thunb. species from Kazakhstan. Plants 2024, 13, 1332. [Google Scholar] [CrossRef] [PubMed]













| Parameters | Xy. chiwensis | Xy. arbuscula |
| Fruit diameter with wings, mm | Mean: 5.30 (±0.02) Min: 5.19 / Max: 5.37 SD: 0.06 |
Mean: 8.53 (±0.17) Min: 7.85 / Max: 9.53 SD: 0.53 |
| Fruit diameter without wings, mm | Mean: 2.81 (±0.09) Min: 2.47 / Max: 3.18 SD: 0.29 |
Mean: 2.57 (±0.06) Min: 2.29 / Max: 2.75 SD: 0.19 |
| Cone length, mm | Mean: 1.09 (±0.03) Min: 0.90 / Max: 1.19 SD: 0.09 |
Mean: 1.90 (±0.05) Min: 1.60 / Max: 2.13 SD: 0.17 |
| Bract length, mm | Mean: 6.07 (±0.27) Min: 4.93 / Max: 8.03 SD: 0.87 |
Mean: 8.91 (±1.13) Min: 5.18 / Max: 12.94 SD: 3.59 |
| Parameter (µm) | Xy. chiwensis | Xy. arbuscula |
| Epidermis (E) | 20.09 ± 2.24 (15.72 – 24.40) | 35.03 ± 3.29 (30.20 – 39.00) |
| Hypodermis (H) | 20.96 ± 2.97 (16.94 – 25.82) | 16.31 ± 2.43 (11.60 – 20.60) |
| Palisade Mesophyll (P) | 29.59 ± 2.88 (23.76 – 33.19) | 33.67 ± 2.98 (30.00 – 41.50) |
| Kranz Cells (KC) | 17.44 ± 2.97 (13.32 – 22.24) | 21.55 ± 4.28 (14.50 – 29.00) |
| Species | Mean 2C ± SD, pg | CV |
| Xy. arbuscula | 3.250 | - |
| Xy. arbuscula | 6.723 ± 0.582 | 8.65% |
| Xy. chiwensis | 2.483 ± 0.191 | 7.68% |
| Accession | Name | Coordinates | Voucher | rITS | rps16f-rps16r2 |
| В130 | Xy. arbuscula | 44.79060083 N 63.14563274 E |
AA0003576 | PV032237 | - |
| В131 | Xy. chiwensis | 43.250147 N 51.671042 E |
AA0003564 | PV032238 | PV036952 |
| B132 | Xy. chiwensis | 43.080778 N 51.696008 E |
AA0003563 | PV032239 | PV036953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
